电流密度

電磁學裏,電流密度()是電荷流動的密度,即每單位截面面積電流量。電流密度是一種向量,一般以符號表示。採用國際單位制,電流密度的單位是安培/米2(ampere/meter2,A/m2)。

定義

电流密度 J 可以简单地定义为通过单位面积 A(国际单位:m2)的电流 I(国际单位:A)。它的量值由极限给出:[1]

当电流密度作为向量 J 时,在曲面 S 上进行曲面积分后,再对持续时间 t1t2 积分,得到 (t2t1) 这段时间流过该面的电荷总量:

计算通量所用到的面积可实可虚,可平可曲,可为截面也可为表面。例如,对于通过导体的载流子来说,这里遇到的面积是导体的截面。

重要性

對於電力系統電子系統的設計而言,電流密度是很重要的。電路的性能與電流量緊密相關,而電流密度又是由導體的物體尺寸決定。例如,隨著積體電路的尺寸越變越小,雖然較小的元件需要的電流也較小,為了要達到晶片內含的元件數量密度增高的目標,電流密度會趨向於增高。更詳盡細節,請參閱摩爾定律

在高頻頻域,由於趨膚效應,傳導區域會更加侷限於表面附近,因而促使電流密度增高。

電流密度過高會產生不理想後果。大多數電導體的電阻是有限的正值,會以熱能的形式消散功率。為了要避免電導體因過熱而被熔化或發生燃燒,並且防止絕緣材料遭到損壞,電流密度必須維持在過高值以下。假若電流密度過高,材料與材料之間的互連部分會開始移動,這現象稱為電遷移()。在超導體,過高的電流密度會產生很強的磁場,這會使得超導體自發地喪失超導性質。

對於電流密度所做的分析和觀察,可以用來探測固體內在的物理性質,包括金屬、半導體、絕緣體等等。在這科學領域,材料學家已經研究發展出一套非常詳盡的理論形式論,來解釋很多機要的實驗觀察[2]

安培力定律描述電流密度與磁場之間的關係。電流密度是安培力定律的一個重要參數,

計算电流密度

自由电流

大自然有很多種載有電荷的粒子,稱為「帶電粒子」,例如,導電體內可移動的電子電解液內的離子電漿內的電子和離子、強子內的夸克[3]。這些帶電粒子的移動,形成了電流。電荷流動的分佈可以由電流密度來描述:

其中,是在位置、在時間的電流密度向量,是帶電粒子的電荷量,是帶電粒子密度,是單位體積的帶電粒子數量,電荷密度是帶電粒子的平均漂移速度

電流密度時常可以近似為與電場成正比,以方程式表達為

其中,电场是电流密度,电导率,是電阻率倒數

採用更基礎性的方法來計算電流密度。這方法建立於方程式

其中,分別是位置積分變數和時間積分變數。

這方式顯示出電導率在時間方面的滯後響應,和在空間方面的非局域響應屬性。原則上,通過微觀量子分析,才能推導出來電導率函數。例如,對於足夠弱小的電場,可以從描述物質的電導性質的線性響應函數()推導[4]。經過一番沉思,可以了解,這電導率和其伴隨的電流密度反映出,在時間方面和在空間方面,電荷傳輸於介質的基本機制。

假設每當時,,則這積分的上限可以延伸至無窮大:

做一個對於時間與空間的傅立葉變換,根據摺積定理,可以得到

其中,是參數為波向量角頻率的電導率複函數

許多物質的電導率是張量,電流可能不會與施加的電場同方向。例如,晶體物質這是這樣的物質。磁場的施加也可能會改變電導行為。

穿過曲面的電流

电流和电流密度之间的关系

穿過曲面的電流可以用面積分計算為

其中,是電流密度,是微小面元素。

連續方程式

由於電荷守恆,從某設定體積流出的電流的淨流量,等於在這體積內部的電荷量的淨變率。以方程式表達,

其中,是電荷密度,是微小體元素,是閉曲面所包圍的體積。

這方程式左邊的面積分表示電流從閉曲面所包圍的體積流出來,中間和右邊的體積分的負號表示,隨著時間的前進,體積內部的電荷量逐漸減少。

根據散度定理

所以,

注意到對於任意體積,上述方程式都成立。所以,兩個被積式恆等:

稱這方程式為連續方程式[5]

參閱

參考文獻

  1. Essential Principles of Physics, P.M. Whelan, M.J. Hodgeson, 2nd Edition, 1978, John Murray, ISBN 0-7195-3382-1
  2. Richard P Martin, , Cambridge University Press: pp. 369ff, 2004, ISBN 0521782856
  3. Anthony C. Fischer-Cripps, , CRC Press: pp. 13, 2004, ISBN 9780750310123
  4. Jørgen Rammer, , Cambridge University Press: pp. 158ff, 2007, ISBN 9780521874991
  5. Griffiths, D.J., 3rd Edition, Pearson/Addison-Wesley: pp. 213, 1999, ISBN 013805326X
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.