算兩次
在數學中,算兩次是一個常用的證明技巧,常在證明恆等式時被提到。其思想是,對一個具體的量用方法甲來計算,得到的答案是A,而用方法乙則得到B,那麼等式A = B成立。此思想雖然明顯,但在實際使用時由於方法甲與方法乙通常有明顯的差異,因此能把兩個表面上相去甚遠的式子聯繫起來。算兩次產生過很多漂亮的證明。
組合恆等式
组合數學中的算兩次是一种组合证明方法。我們可以對同一個組合計數問題從兩個不同的方面去觀察,從而得到兩個表達式,其值卻相同。例如以下問題:
設 n 為給定的正整數。假如你要創造一種語言,其中的字母只有 ※ 和 ◎ 兩種,而每個詞語總是由 n 個字母組成,那最多可以有多少個不同的詞語?
甲:由於詞語中任一位置都可以自由地選擇※或◎中的任何一個,所以答案是 2 × 2 × ... × 2 = 2n。
乙:如果進一步規定◎正好出現 k 次,那麼符合要求的單詞就只有 n 取 k 那麼多個了。但k 可以是 0, 1, 2, ..., n 的任何一個,因此總計起來即為 ,其中 是組合數(n取k)。
兩種方法都得到了正確的表達式,因此。
參見
- 證明組合恆等式的其他組合技巧,如:
- 母函數
- 遞歸關係
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.