紧致开拓扑
定义
设 X、Y 为两个拓扑空间,令C(X, Y) 为所有从X 射到 Y 上的连续映射的集合。对于X 中的一个紧集K 和 Y 中的一个开集U,设V(K, U) 为集合 C(X, Y)中所有使得f(K)属于 U 的映射的集合。所有的V(K, U) 构成紧致开拓扑的一个子基(但一般不构成C(X, Y)上的一个拓扑基)。
性质
- 如果 * 是一个单点空间,那么可以将C(*, X) 等同于 X。在这种情况下,C(*, X) 上面的紧致开拓扑就等同于X 上的拓扑。
- 如果Y 是T0空间、T1空间、豪斯多夫空间、正则空间或者吉洪诺夫空间的话,那么对应的紧致开拓扑满足分离公理。
- 如果 X 是豪斯多夫空间,并且S 是Y 的一个子基,那么集合 是 C(X, Y) 上的紧致开拓扑的一个子基。
- 如果 Y 是一致空间(特别来说,如果 Y 是一个度量空间),那么其对应的紧致开拓扑等价于紧收敛拓扑。换句话说,如果 Y 是一致空间的话,那么一个函数序列 {fn}在紧致开拓扑上收敛到一个极限(设为 f)当且仅当对 X 所有的紧子集 K,{fn} 都在K 上一致收敛到 f。特别地,如果 X 是紧集,而 Y 是一致空间,那么其对应的紧致开拓扑等价于基于一致收敛的拓扑。
- 如果 X、Y 和 Z 是三个拓扑空间,其中Y 是局部豪斯多夫紧致的(或者仅仅是准正则的),那么由关系:(f, g) fog 所给出的复合映射 C(Y, Z) × C(X, Y) → C(X, Z) 是连续的(这里所有的映射空间都使用相应的紧致开拓扑,而 C(Y, Z) × C(X, Y)上的是积拓扑)。
- 如果 Y 是局部豪斯多夫紧致的(或者仅仅是准正则的),那么赋值函数e : C(Y, Z) × Y → Z(定义为e(f, x) = f(x))是连续函数。这可以看成上一个性质在X 为单点空间时的特例。
- 如果 X 是紧空间,Y 是装备有距离 d 的度量空间,那么C(X, Y) 上的紧致开映射是可度量的,并且其上的距离由函数 所给出。
参见
- 有界开拓扑
参考来源
- Dugundji, James. . Boston, Massachusetts: Allyn and Bacon. 1966. ISBN B000-KWE22-K.
- O.Ya. Viro, O.A. Ivanov, V.M. Kharlamov and N.Yu. Netsvetaev (2007) Textbook in Problems on Elementary Topology (页面存档备份,存于).
- . PlanetMath.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.