线性代数基本定理

线性代数基本定理rm×n 矩阵A奇异值分解:

对于矩阵 (行及列)产生了四个基本线性子空间:

子空间名字 定义 包含于 维数
列空间值域 的前
左零空间上核 的后
行空间余象 的前
零空间 的后

Secondly:

  1. In , , 也就是, 零空间与行空间的正交补相同.
  2. In , , 也就是, 左零空间为列空间的正交补.
矩阵A的四个基本子空间.

子空间的维数遵从秩-零化度定理.

进一步, 所有这些空间本质地定义于– 不必考虑基的选择 – 抽象向量空间, 算子, 对偶空间: 的核与像是的上核与余象.

参见

参考文献

  • Strang, Gilbert. Linear Algebra and Its Applications. 3rd ed. Orlando: Saunders, 1988.
  • Strang, Gilbert, (PDF), American Mathematical Monthly, 1993, 100 (9): 848–855, JSTOR 2324660, doi:10.2307/2324660

外部链接

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.