羅斯π引理
羅斯π引理(Ross'π lemma),得名自以撒·麥克·羅斯[1][2][3],是計算最优控制的結果。以產生反馈控制的Caratheodory-π解為基礎,羅斯π引理提到存在基本的时间常数,是一控制系統需要針對其可控制性及穩定性進行計算的。此時間常數稱為羅斯時間常數(Ross' time constant)[4][5],和統御非線性控制系統之向量場的利普希茨連續成反比[6][7]。
理論內涵
在定義羅斯時間常數T時的比例因子和受控制的擾動大小以及回授控制的規格有關。若沒有擾動,羅斯π-引理會證明開迴路的最佳解和閉迴路的相關。若有擾動,比例因子可以寫成朗伯W函数的形式。
實務應用
在實際應用中,羅斯時間常數可以用DIDO的數值實驗來求得。羅斯等人證明此時間常和Caratheodory-π解的實際實現方式有關[6]。羅斯等人證明,若回授解只由零階保持產生,則若要保持可控制性及穩定性,需要快很多的取樣率。另一方面,另回授解是由Caratheodory-π技術所產生,用較慢的取樣率即可。這表示產生回授解的計算負擔遠小於標準實現方式的計算負擔。此一概念已用在机器人学的避免碰撞演算法中。處理有關靜止或是移動障礙物,且資訊不完整,或是有不確定性的情形[8]。
參考資料
- B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory, Vol. 330 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] Series, Springer, Berlin, 2005.
- W. Kang, "Rate of Convergence for the Legendre Pseudospectral Optimal Control of Feedback Linearizable Systems", Journal of Control Theory and Application, Vol.8, No.4, 2010. pp. 391-405.
- Jr-S Li, J. Ruths, T.-Y. Yu, H. Arthanari and G. Wagner, "Optimal Pulse Design in Quantum Control: A Unified Computational Method (页面存档备份,存于)", Proceedings of the National Academy of Sciences, Vol.108, No.5, Feb 2011, pp.1879-1884.
- N. Bedrossian, M. Karpenko, and S. Bhatt, "Overclock My Satellite: Sophisticated Algorithms Boost Satellite Performance on the Cheap (页面存档备份,存于)" IEEE Spectrum, November 2012.
- R. E. Stevens and W. Wiesel, "Large Time Scale Optimal Control of an Electrodynamic Tether Satellite", Journal of Guidance, Control and Dynamics, Vol. 32, No. 6, pp. 1716–1727, 2008.
- I. M. Ross, P. Sekhavat, A. Fleming and Q. Gong, "Optimal Feedback Control: Foundations, Examples, and Experimental Results for a New Approach (页面存档备份,存于)", Journal of Guidance, Control, and Dynamics, vol. 31 no. 2, pp. 307–321, 2008.
- I. M. Ross, Q. Gong, F. Fahroo, and W. Kang, "Practical Stabilization Through Real-Time Optimal Control (页面存档备份,存于)", 2006 American Control Conference, 电气电子工程师学会, Piscataway, NJ, 14–16 June 2006.
- M. Hurni, P. Sekhavat, and I. M. Ross, "An Info-Centric Trajectory Planner for Unmanned Ground Vehicles (页面存档备份,存于)", Chapter 11 in Dynamics of Information Systems: Theory and Applications, Springer, 2010, pp. 213–232.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.