利普希茨連續

數學中,特別是實分析利普希茨連續()以德國數學家魯道夫·利普希茨命名,是一個比一致連續更強的光滑性條件。直覺上,利普希茨連續函數限制了函數改變的速度,符合利普希茨條件的函數的斜率,必小於一個稱為利普希茨常數的實數(該常數依函數而定)。

微分方程,利普希茨連續是皮卡-林德洛夫定理中確保了初值問題存在唯一解的核心條件。一種特殊的利普希茨連續,稱為壓縮應用於巴拿赫不動點定理

利普希茨連續可以定義在度量空間上以及賦范向量空間上;利普希茨連續的一種推廣稱為赫爾德連續

定義

对于利普希茨连续函数,存在一个双圆锥(白色)其顶点可以沿着曲线平移,使得曲线总是完全在这两个圆锥外。

對於在實數集的子集的函數 ,若存在常數,使得,則稱 符合利普希茨條件,對於 最小的常數 稱為 利普希茨常數

稱為收縮映射

利普希茨條件也可對任意度量空間的函數定義:

給定兩個度量空間。若對於函數,存在常數 使得

則說它符合利普希茨條件。

若存在使得

則稱双李普希茨(bi-Lipschitz)的。

皮卡-林德洛夫定理

若已知有界,符合利普希茨條件,則微分方程初值問題剛好有一個解。

在應用上,通常屬於一有界閉區間(如)。於是必有界,故有唯一解。

例子

  • 符合利普希茨條件,
  • 不符合利普希茨條件,當
  • 定義在所有實數值的符合利普希茨條件,
  • 符合利普希茨條件,。由此可見符合利普希茨條件的函數未必可微。
  • 不符合利普希茨條件,。不過,它符合赫爾德條件
  • 若且唯若處處可微函數f的一次導函數有界,符合利普希茨條件。這是中值定理的結果。所有函數都是局部利普希茨的,因為局部緊緻空間的連續函數必定有界。

性質

  • 符合利普希茨條件的函數連續,实际上一致連續
  • 双李普希茨(bi-Lipschitz)函數是單射
  • Rademacher定理:若為開集,符利普希茨條件,則幾乎處處可微。[1]
  • Kirszbraun定理:給定兩個希爾伯特空間符合利普希茨條件,則存在符合利普希茨條件的,使得的利普希茨常數和的相同,且[2][3]

參考

  1. Juha Heinonen, Lectures on Lipschitz Analysis 页面存档备份,存于, Lectures at the 14th Jyväskylä Summer School in August 2004. (第18頁以後)
  2. M. D. Kirszbraun. Uber die zusammenziehenden und Lipschitzchen Transformationen. Fund. Math., (22):77–108, 1934.
  3. J.T. Schwartz. Nonlinear functional analysis. Gordon and Breach Science Publishers, New York, 1969.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.