莱恩-埃姆登方程
莱恩-埃姆登方程(Lane–Emden equation)是天文物理中一個表現自重力位能,球對稱多方流體的無因次泊松方程。此方程式名字由來於強納生·荷馬·萊恩與羅伯特·埃姆登。此方程式的解表示了恆星在半徑 時的壓力與密度,方程式中並有重構徑向變數 和重構溫度變數 :
當
以及
下標 c 代表核心的壓力與密度。是多方指數;多方指數與代表氣體壓力及密度的多方方程式有關係。
是代表壓力, 則是密度,而 則是比例常數。標準的邊界條件則是 和 。因此該方程式的解是描述恆星壓力和密度與半徑的關係,並且給定的多方指數 也是多方球的多方指數 。流體靜力平衡與位能、密度、壓力梯度有關;泊松方程與位能、密度有關。
應用
在物理學上,流體靜力平衡與位能梯度、密度和壓力梯度相關,而泊松方程則可以是位能和密度的關係式。因此如果有一個方程式可以進一步指出壓力和密度如何互相反映,就可以得到一個解。以上多方氣體的特定選項在數學上陳述了這個問題,尤其是該陳述特別簡潔並推導出了莱恩-埃姆登方程。這個方程式對於恆星等自重力位能氣體球是相當有用的近似,但它的假設通常是受到限制。
推導
方程式解
解析解
只在3個值時有解析解
在經過一連串取代的步驟後,方程式可以有進一步的解:
當 ,方程式的解將是循著徑向的無限大值。
數值解
一般情形下莱恩-埃姆登方程的解必須以數值積分方式求得。許多數值積分的標準解法要求該問題必須以一階常微分方程表示,例如:
在這裡 被視為無因次質量,而質量可使用 表示。相關的邊界條件是 和 。第一個方程式表現了流體靜力平衡,而第二個方程式則表示質量守恆。
同調變數
同調不變方程
已知如果 是莱恩-埃姆登方程的解,那麼完整的解方程式將是 [1]。和這方式相關的解則稱為「同調」,而轉換的過程是同調性的。如果我們選擇不變的變數達到同調性,就可以將莱恩-埃姆登方程降一階計算。
而這類可選擇的變數有多個,一個適當的選擇是:
和
我們可以將相對於 的變數的對數微分,得到:
和
- .
最後,我們將以上兩個方程式相除以消去應變量 ,留下:
以上即為單一一階方程式。
相關條目
- 恆星結構
- 埃姆登-錢德拉塞卡方程
- 錢德拉塞卡白矮星方程
延伸閱讀
- Lane, Jonathan Homer, , The American Journal of Science and Arts, 2nd series, 1870, 50: 57–74.
參考資料
- Chandrasekhar, Subrahmanyan. . Chicago, Ill.: University of Chicago Press. 1939.
- Horedt, Georg P. . A&A. 1987, 117 (1-2): 117–130 [2012-06-27]. (原始内容存档于2017-03-06).
外部連結
- 埃里克·韦斯坦因. . MathWorld.
- Horedt, George Paul ( 1986 ) 'Seven-digit tables of Lane-Emden functions' PDF ( 5.9MB ), Astrophysics and Space Science vol. 126, no. 2, Oct. 1986, p. 357–408. ( ISSN 0004-640X ). Collected at the Smithsonian/NASA Astrophysical Data System.