调和测度
數學中,調和測度是調和函數理論中出現的一個概念。给定了一个解析函数的模在一个区域 D 边界上的界,能用调和测度去估计函数在区域内部的模。在一个非常相关的领域,一个伊藤扩散 X 的调和测度描绘了 X 撞击 D 边界的分布。
定義
设 D 是 n-维欧几里得空间中一个有界开区域,n ≥ 2,记 ∂D 为 D 的边界。任何连续函数 f : ∂D → R 惟一确定一个调和函数 Hf 满足狄利克雷问题:
如果点 x ∈ D 取定,Hf(x) 确定了 ∂D 上的一个非负拉东测度 ω(x, D):
这个测度 ω(x, D) 称为关于区域 D 和点 x 的调和测度。
性質
- 对任何 ∂D 中的波萊爾集 E ,调和测度 ω(x, D)(E) 等于Direchlet 问题中边界函数取 E 的示性函数的解在 x 点的取值。故ω(x, D)(E) 是 x 的调和函数。
- 对取定的 D 和 E ⊆ ∂D, ω(x, D)(E) 是x ∈ D 的一个调和函数,且
- 从而,对任何 x 和 D,ω(x, D) 是 ∂D 上的概率测度。
举例和应用
要计算出一个一般区域的调和测度是困难的,但是对于平面 R2 上一些常见的区域的边界上某些子集,我们可以直接写出调和测度。
- D 为圆域,E ⊆ ∂D 是长为 2α 的圆弧,设 θ(x) 为点 x ∈ D 对圆弧 E 的视角,则:
若已知调和函数的模在边界上的估计,利用调和测度就可得到内部模的一个估计。譬如,如果 ∂D 分为 E1 和 E2 两部分(多部分一样),设调和函数 f 的模长在 E1、E2 上分别有界 M1、M2,那么 f 在 D 内部 x 点有界:
设 D、E1、E2 为第二个例子,取 f(x) = |log(h(x))|,这里 h(x) 是环域上一个全纯函数,我们便可得到阿达马的三圆定理。
擴散的調和測度
考虑始于区域 D 内部某一点 x 的一个取 Rn 值的 Itō 扩散 X,具有规律 Px。假设我们要知道 X 逃逸出 D 的点分布。譬如,实数轴上开始于 0 点,位于区间 (−1, +1) 的标准布朗运动,在 −1 的概率是 1/2,在 +1 的概率是 1/2,所以 Bτ(−1, +1) 是集合{−1, +1} 上的一致分布。
一般的,如果 G 紧嵌入 Rn,那么 X 在 G 的 ∂G的调和测度(或撞击分布)为测度 μGx,定义为:
对 x ∈ G 和 F ⊆ ∂G。
回到首先布朗运动的例子,我们可以证明如果 B 是一个 Rn 内开始于 x ∈ Rn 的布朗运动,且 D ⊂ Rn 是一个以 x 为中心的开球体,那么 B 在 ∂D 的调和测度在 D 绕 x 的所有旋转下是不变的,从而调和测度等于 ∂D 上的曲面测度。
參考文獻
- Øksendal, Bernt K. Sixth edition. Berlin: Springer. 2003. ISBN 3-540-04758-1. MR2001996 (See Sections 7, 8 and 9)
- Ahlfors, Lars V. Third edition. Beijing: China Machine Press. 2004. ISBN 711113416 请检查
|isbn=
值 (帮助). (See Sections 6.5.1)
- Solomentsev, E.D. (2001), Harmonic measure(页面存档备份,存于), in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Kluwer Academic Publishers, ISBN 978-1556080104