链复形
数学上,同调代数领域中的一个链复形是一个交换群或者模的序列A0, A1, A2... 通过一系列同态dn : An→An-1相连,使得每两个连接的映射的复合为零:dn o dn+1 = 0对于所有n。它们常常写作如下形式:
定義鏈複形的同調群為 。當所有同調群為零時,此鏈複形為正合的。
链复形概念的一个变种是上链复形。一个上链复形是一个交换群或者模的序列A0, A1, A2...由一系列同态dn : An→An+1相连,使得任何两个接连的映射的复合为零:dn+1 o dn = 0 对于所有的n:
定義上鏈複形的上同調群為 。當所有上同調群為零時,此上鏈複形正合。想法基本上是一样的。
链复形的应用通常定义并应用它们的同调群(对于上链复形是上同调群);在更抽象的范围里,很多等价关系被应用到复形上(例如从链同伦的思想开始,以下将解说)。链复形很容易在交换范畴中定义。
一个有界复形是其中,几乎所有的Ai为零—这样一个有限的复形,用0来伸展到左边和右边。一个例子是定义一个(有限)单纯复形的同调理论的复形。
例子
鏈映射
兩個鏈複形 、 之間的鏈映射是一族同態 ,使之滿足: ;全體鏈複形依此構成一範疇。鏈映射誘導出同調群間的映射。
上鏈複形的情形類似:兩個上鏈複形 、 之間的上鏈映射是一族同態 ,使之滿足: 。上鏈映射也誘導出上同調群間的映射。
舉例來說,拓撲空間之間的連續映射誘導出奇異上同調的鏈映射;而光滑流形間的光滑映射則誘導出德拉姆上同調的上鏈映射。這是函子性或稱自然性的一個例子:空間與映射的拓撲/幾何性質藉此反映在代數結構上,因而變得容易操作與計算。
鏈同倫
兩個鏈映射 稱作是同倫的,若且唯若存在一族同態 使得 。
上鏈映射的同倫定義也類似,惟此時考慮的是一族同態 。以下給出上鏈同倫的圖解:
(上)鏈同倫的鏈映射在(上)同調群上誘導出相同的映射。特別是:同倫於恆等映射 id. 的(上)鏈映射是擬同構。
鏈映射的同倫可理解作單純形同倫的代數翻譯。
参看
- 同调
- 微分分级代数