阿廷環
定義
一個環稱作阿廷環,若且唯若對每個由的理想構成的降鏈,必存在,使得對所有的都有(換言之,此降鏈將會固定)。
將上述定義中的理想代換為左理想或右理想,可以類似地定義左阿廷環與右阿廷環,A是左(右)阿廷環若且唯若A在自己的左(右)乘法下形成一個左(右)阿廷模;對於交換環則無須分別左右。
例子
- 設為一個域,若環是佈於上的有限維代數,則是阿廷環。
文獻
- Charles Hopkins. Rings with minimal condition for left ideals. Ann. of Math. (2) 40, (1939). 712--730.
- Serge Lang, Algebra (2002), Graduate Texts in Mathematics 211, Springer. ISBN 0-387-95385-X
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.