阿达马三圆定理
设 是环域 上的全纯函数, 是 在圆周 上的最大值。那么, 是一个对数 的凸函数。进一步,如果不存在常数 和,使得 是 的形式,那么 是 的严格凸函数。
定理结论可以重述为:
对任何半径为 的同心圆成立。
参见
- 最大值原理
- 对数凸函数
- 哈代定理
- 调和测度
参考文献
- ^ H.M. Edwards, Riemann's Zeta Function, (1974) Dover Publications, ISBN 0-486-41740-9 (See section 9.3.)
- E. C. Titchmarsh, The theory of the Riemann Zeta-Function, (1951) Oxford at the Clarendon Press, Oxford. (See chapter 14)
- 本條目含有来自PlanetMath《Hadamard three-circle theorem》的內容,版权遵守知识共享协议:署名-相同方式共享协议。
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.