电化学梯度
电化学梯度(英語:)是离子跨膜运动而产生的[1][2]梯度,通常包括电位梯度和浓度梯度。电化学势能是一种维持细胞生命活动的势能。这一能量以化学势的形式存储,表现为细胞膜两侧的离子浓度梯度。当穿过可渗透膜的离子浓度不相等时,离子将通过简单的扩散穿过膜从高浓度区域移动到低浓度区域。 离子还携带电荷,在膜上形成电势。 如果跨膜的电荷分布不均,则电势差会产生驱动离子扩散的力,直到膜两侧的电荷平衡[3]。
概述
電化學勢在電分析化學和工業應用(如電池和燃料電池)中很重要。 它代表了許多可互換的勢能形式之一,通過它能量可以被保存。
在生物過程中,離子通過扩散作用或主動運輸跨膜移動的方向由電化學梯度決定。 在線粒體和葉綠體中,質子梯度用於產生化學滲透勢(chemiosmotic potential),也稱為質子動力(proton-motive force)。 這種勢能分別用於通過氧化磷酸化或光合磷酸化合成ATP[4]。
生物學背景
通過跨細胞膜的離子運動產生跨膜電勢驅動生物過程,如神經傳導、肌肉收縮、激素分泌和感覺過程。 按照慣例,典型的動物細胞在細胞內部相對於外部具有 -50 mV 至 -70 mV 的跨膜電位[5]。
電化學梯度還在線粒體氧化磷酸化中建立質子梯度方面發揮作用。
離子梯度
由於離子帶電,它們不能通過簡單的擴散穿過膜。 兩種不同的機制可以跨膜運輸離子:主動運輸或被動運輸。離子主動轉運的一個例子是Na+/K+-ATPase(NKA)。NKA 催化 ATP 水解為 ADP 和無機磷酸鹽,每水解一個 ATP 分子,三個Na+被轉運到細胞外,兩個K+被轉運到細胞內。這使得細胞內部比外部更負,更具體地產生約-60mV的膜電位 Vmembrane[6]。 被動傳輸的一個例子是通過Na+, K+, Ca2+和Cl−通道的離子通道。 這些離子傾向於向下移動它們的濃度梯度。
参考文献
- . 國家教育研究院. [2017-01-04]. (原始内容存档于2017-01-04).
- The use of the term "Fermi energy" as synonymous with Fermi level (a.k.a. electrochemical potential) is widespread in semiconductor physics. For example: Electronics (fundamentals And Applications) (页面存档备份,存于) by D. Chattopadhyay, Semiconductor Physics and Applications (页面存档备份,存于) by Balkanski and Wallis.
- Nelson, David; Cox, Michael. . New York: W.H. Freeman. 2013: 403. ISBN 978-1-4292-3414-6.
- Nath, Sunil; Villadsen, John. . Biotechnology and Bioengineering. 2015-03-01, 112 (3): 429–437. ISSN 1097-0290. PMID 25384602. S2CID 2598635. doi:10.1002/bit.25492 (英语).
- Nelson, David; Cox, Michael. . New York: W.H. Freeman. 2013: 464. ISBN 978-1-4292-3414-6.
- Aperia, Anita; Akkuratov, Evgeny E.; Fontana, Jacopo Maria; Brismar, Hjalmar. . American Journal of Physiology. Cell Physiology. 2016-04-01, 310 (7): C491–C495 [2022-07-03]. ISSN 0363-6143. PMID 26791490. doi:10.1152/ajpcell.00359.2015 . (原始内容存档于2022-07-03) (英语).
參考文獻
- Campbell & Reece. . Pearson Benjamin Cummings. 2005. ISBN 0-8053-7146-X.
- Stephen T. Abedon, "Important words and concepts from Chapter 8, Campbell & Reece, 2002 (1/14/2005)", for Biology 113 at the Ohio State University