非对称关系
正式定義
一個定義於 上的二元關係 是 的任何子集。給定 ,我們將 簡寫為 ,讀作「 至 存在關係 ( is related to by )」。
如果對於所有 ,若 ,則 (也就是 ),則我們稱 是非對稱的。以一階邏輯的形式可以寫成:
一個邏輯等價的定義如下:對於所有 , 與 中至少有一為假。以一階邏輯的形式可以寫成:
非對稱關係的一個例子是定義於實數上的「小於關係」,亦即 。由於當 小於 時, 一定不小於 ,因此 是非對稱的。另一方面,「小於等於關係」則不是非對稱的,因為當 時, 和 會同時成立,不符合非對稱關係的定義。
非對稱關係不代表對稱關係的相反,上述的「小於等於關係」既不是非對稱關係,也不是對稱關係;而「空關係()」是唯一同時是非對稱關係,也是對稱關係的關係。
非對稱關係(Asymmetric)與反對稱關係(Antisymmetric)的差異在於:反對稱關係容許自反性, 可以屬於 ,而非對稱關係不允許。如上述的「小於等於關係」即是反對稱關係的一例。
特性
參考資料
- Gries, David; Schneider, Fred B., , Springer-Verlag: 273, 1993.
- Nievergelt, Yves, , Springer-Verlag: 158, 2002.
- Flaška, V.; Ježek, J.; Kepka, T.; Kortelainen, J. (PDF). Prague: School of Mathematics - Physics Charles University. 2007: 1 [2013-08-20]. (原始内容 (PDF)存档于2013-11-02). Lemma 1.1 (iv). Note that this source refers to asymmetric relations as "strictly antisymmetric".
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.