16S 核糖体RNA
16S核糖体RNA(16S ribosomal RNA),简称16S rRNA,是原核生物的核糖体中30S亚基的组成部分。16S rRNA的长度约为1,542 nt。卡尔·乌斯和乔治·福克斯是率先在系统发育中使用的16S rRNA基因的两个先驱者[2]。
功能
已知16S rRNA具有如下几项功能:
- 16S rRNA具有与原核生物核糖体大亚基中的23S rRNA相似的结构决定功能,可作为核糖体蛋白质结合的架构。在足量Mg2+存在下分离到的16S rRNA处于紧密状态,其空间结构与30S亚基的大小和形状十分相似。[4]
- 16S rRNA的3'端含有能与mRNA上游AUG起始密码子通过氢键结合的反夏因-达尔加诺序列。另有发现表明,16S rRNA中1,505-1,539的CCUCC序列与mRNA的相应序列有互补关系。[4]
- 16S rRNA能通过氢键与23S rRNA结合,增强原核生物70S核糖体一大一小两个亚基(50S亚基与30S亚基)结合时的稳定性。
- 16S rRNA能通过其1,492及1,493的腺嘌呤残基(参见嘌呤分子结构图解)的N1原子与mRNA骨架上的2'OH基团之间产生氢键,使核糖体A位密码子-反密码子的碱基互补配对稳定化。
结构
通用引物
由于不同种的真细菌与古细菌间的16S rRNA基因(16S rDNA)是高度保守的[5],16S rDNA常被用于对各种生物进行的系统发生学方面的研究[6]这种运用16S rRNA对生物进行系统发生学研究的方法由卡尔·沃斯(Carl Woese)开创[7]。另外,线粒体和叶绿体中的rRNA也都被扩增了。在获得能提供系统发育学信息的16S rRNA分子时需要利用通用PCR引物对16S rRNA分子进行扩增。16S rRNA序列的对比分析需要在这类“通用引物”的脱氧核糖核酸分子的辅助下完成,这类分子具有如下序列:
- 8UA正向:5'-AGA GTT TGA TCM TGG CTC AG-3'
- 519B反向:5'-GTA TTA CCG CGG CKG CTG-3'
- 反向:ACG GCT ACC TTG TTA CGA CTT
这类引物因并未在近期发现的几种属于纳古菌门(Nanoarchaeota)的热液古菌[8]中分离识别出来,也被称为准通用引物。
引物名字 | 序列 (5'-3') | 参考资料 |
---|---|---|
8F(同F8或27F) | AGA GTT TGA TCC TGG CTC AG | [9][10] |
U1492R | GGT TAC CTT GTT ACG ACT T | 同上 |
928F | TAA AAC TYA AAK GAA TTG ACG GG | [11] |
336R | ACT GCT GCS YCC CGT AGG AGT CT | 同上 |
1100F | YAA CGA GCG CAA CCC | |
1100R | GGG TTG CGC TCG TTG | |
337F | GAC TCC TAC GGG AGG CWG CAG | |
907R | CCG TCA ATT CCT TTR AGT TT | |
785F | GGA TTA GAT ACC CTG GTA | |
805R | GAC TAC CAG GGT ATC TAA TC | |
533F | GTG CCA GCM GCC GCG GTA A | |
518R | GTA TTA CCG CGG CTG CTG G | |
27F(同F8或8F) | AGA GTT TGA TCM TGG CTC AG | [12] |
1492R(同R1510) | CGG TTA CCT TGT TAC GAC TT | 同上 |
16S核糖体数据库
因为它存在于大多数微生物并显示适当的变化,16S rRNA基因被用作分类鉴定微生物的标准。大多数细菌和古细菌的16S rRNA基因序列型菌株可在公共数据库得到,例如NCBI数据库。然而,在这些数据库中发现的序列的质量往往没有验证。因此,只收集16S rRNA序列辅助数据库被广泛使用。最经常使用的数据库如下:
1: EzTaxon-e. https://web.archive.org/web/20130928154318/http://eztaxon-e.ezbiocloud.net/ [21]
2:核糖体数据库项目。http://rdp.cme.msu.edu/(页面存档备份,存于) 核糖体数据库项目(RDP)。
3: SILVA. [22]
4: Greengenes. Greengenes是基于新生系统发生,提供了标准的操作分类单元集的质量控制,全面的16S参考数据库和分类。该网站的官方主页是http://greengenes.secondgenome.com,并在Creative Commons许可BY-SA3.0许可[23][24]。
参考文献
- Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, Bashan A, Bartels H, Agmon I, Franceschi F, Yonath A 在3.3 Å解析度下具有功能活性的核糖体小亚基. . Cell. 2000, 102 (5): 615–23. PMID 11007480. doi:10.1016/S0092-8674(00)00084-2.
- Woese, Carl R.; Kandler, O; Wheelis, M. . Proc Natl Acad Sci USA. 1990, 87 (12): 4576–9 [2015-09-07]. Bibcode:1990PNAS...87.4576W. PMC 54159 . PMID 2112744. doi:10.1073/pnas.87.12.4576. (原始内容存档于2008-06-27).
- Case RJ, Boucher Y, Dahllöf I, Holmström C, Doolittle WF, Kjelleberg S. . Appl. Environ. Microbiol. 2007-01, 73 (1): 278–88. PMC 1797146 . PMID 17071787. doi:10.1128/AEM.01177-06.
- 聂剑初、吴国利、张翼伸、杨绍钟、刘鸿铭. . 北京: 高等教育出版社. 1996年6月: 59. ISBN 7-04-007259-9. (2002年重印).
- Coenye T, Vandamme P. . FEMS Microbiol. Lett. 2003-11, 228 (1): 45–9. PMID 14612235. doi:10.1016/S0378-1097(03)00717-1.
- 系统发育学研究中对16S rDNA扩增的运用 (页面存档备份,存于)W G Weisburg, S M Barns, D A Pelletier and D J Lane; J Bacteriol. 1991 January; 173(2): 697-703
- Woese, C. R.; Fox, G. E. . Proceedings of the National Academy of Sciences (Proceedings of the National Academy of Sciences). 1977-11-01, 74 (11): 5088–5090. ISSN 0027-8424. doi:10.1073/pnas.74.11.5088.
- Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO. . Nature. 2002, 417 (6884): 63–7 [2010-12-12]. PMID 11986665. doi:10.1038/417063a. (原始内容存档于2019-08-21).
- Eden PA, Schmidt TM, Blakemore RP, Pace NR. . Int J Syst Bacteriol. 1991, 41 (2): 324–325. PMID 1854644. doi:10.1099/00207713-41-2-324.
- . [2015-09-07]. (原始内容存档于2019-08-21).
- Weidner S, Arnold W, Pühler A. (PDF). Appl Env Microbiol. 1996, 62 (3): 766–71 [2015-09-07]. (原始内容 (PDF)存档于2011-05-16).
- Jiang, H.; Dong, H.; Zhang, G.; Yu, B.; Chapman, L. R.; Fields, M. W. . Applied and Environmental Microbiology. 2006, 72 (6): 3832–3845. PMC 1489620 . PMID 16751487. doi:10.1128/AEM.02869-05.
- Pereira, F.; Carneiro, J.; Matthiesen, R.; van Asch, B.; Pinto, N.; Gusmao, L.; Amorim, A. . Nucleic Acids Research. 2010-10-04, 38 (22): e203–e203 [2015-09-07]. doi:10.1093/nar/gkq865. (原始内容存档于2016-05-04).
- Kolbert, CP; Persing, DH. . Current Opinion in Microbiology. June 1999, 2 (3): 299–305. PMID 10383862. doi:10.1016/S1369-5274(99)80052-6.
- J. E. Clarridge III. . Clin Microbiol Rev. 2004, 17 (4): 840–862. PMC 523561 . PMID 15489351. doi:10.1128/CMR.17.4.840-862.2004.
- Ting Lu, Peter G. Stroot, Daniel B. Oerther. . Appl Environ Microbiol. 2009, 75 (13): 4589–4598. PMC 2704851 . PMID 19395563. doi:10.1128/AEM.02970-08.
- Weisburg WG, Barns SM, Pelletier DA, Lane DJ. . J Bacteriol. 1991, 173 (2): 697–703. PMC 207061 . PMID 1987160.
- Brett P J, DeShazer D, Woods DE. . Int J Syst Bacteriol. 1998, 48 (1): 317–320. PMID 9542103. doi:10.1099/00207713-48-1-317.
- Schmidt TM, Relman DA. . Methods Enzymol. Methods in Enzymology. 1994, 235: 205–22. ISBN 978-0-12-182136-4. PMID 7520119. doi:10.1016/0076-6879(94)35142-2.
- Gray JP, Herwig RP. . Appl Environ Microbiol. 1996, 62 (11): 4049–59. PMC 168226 . PMID 8899989.
- Chun, J.; Lee, J.-H.; Jung, Y.; Kim, M.; Kim, S.; Kim, B. K.; Lim, Y. W. . Int J Syst Evol Microbiol. 2007, 57: 2259–2261. doi:10.1099/ijs.0.64915-0.
- Elmar Pruesse, Christian Quast, Katrin Knittel, Bernhard M. Fuchs, Wolfgang Ludwig, Jörg Peplies, Frank Oliver Glöckner (2007) Nucleic Acids Res. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. December; 35(21): 7188–7196.
- DeSantis, T. Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E. L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G. L. . Appl Environ Microbiol. 2006, 72: 5069–72. doi:10.1128/aem.03006-05.
- McDonald, D; Price, MN; Goodrich, J; Nawrocki, EP; DeSantis, TZ; Probst, A; Andersen, GL; Knight, R; Hugenholtz, P. . ISME. 2011, 6: 610–618. doi:10.1038/ismej.2011.139.
外部链接
- (英文)University of Washington Laboratory Medicine: Molecular Diagnosis | Bacterial Sequencing(页面存档备份,存于)
- (英文)核糖体数据库计划(页面存档备份,存于)
- (英文)核糖体(页面存档备份,存于)
- (英文)SILVA数据库(页面存档备份,存于)
- (英文)greengenes数据库
- (英文)eztaxon-e数据库