卡比博-小林-益川矩阵

卡比博-小林-益川矩阵(,CKM或KM )是粒子物理标准模型的一个重要组成成份,它表征了顶类型和底类型夸克间通过W粒子弱相互作用的耦合强度。对二代夸克情形,它是由意大利物理学家卡比博在1963年首先给出的,通常被称为卡比博矩阵或卡比博角。1973年日本物理学家小林诚益川敏英把它推广到三代夸克。三代矩阵含有相位,可以用来解释弱相互作用中的电荷宇称对称性破缺(CP破坏),也被经常用来解释宇宙重子数不对称。CKM矩阵在轻子中的对应是牧-中川-坂田矩阵(或MNS)。

内容

历史

早期的粒子物理模型包涵三种夸克—上夸克下夸克奇异夸克。在研究强子弱衰变中,人们发现奇异数守恒的过程要比不守恒的过程进行得快约20倍。为解释此现象,卡比博引入了一个下夸克和奇异夸克(这两种夸克有相同的量子数)之间的混合角θc[1]。上夸克与下夸克和奇异夸克的相互作用耦合分别正比于此角的余弦(cosθc)和正弦(sinθc)。实验上sinθc约为0.23。

1973年,在一篇发表在日本期刊《理论物理学进展》上的题为“弱相互作用可重整化理论中的CP破坏”的论文中,小林诚和益川敏英把卡比博角推广到三代夸克[2]。他们发现虽然一般的三维幺正矩阵有九个实参数,但是只有四个具有物理意义,而其它的都可以被吸收到夸克波函数的位相中而不为观测。四个物理参数中的一个是位相因子,它提供了CP破坏的微观机制,同時猜测了第三代夸克的存在,因此具有重大的物理意义。他们二人也因而与南部阳一郎分享了2008年诺贝尔物理学奖[3][4]

如今,寻找CKM矩阵参数的微观物理起源是粒子物理理论研究的重大课题之一。

参数化表示

CKM矩阵是一个三维幺正矩阵。 小林诚和益川敏英当初给的表示是[2]:

在标准参数化下,它可以由三个混合角(θ12θ13θ23)和一个相位(δ)表示为[5]

其中(uct)和(dsb)分别代表三代顶类型(上、粲、顶)和底类型(下、奇异、底)夸克,c12s12等是cosθ12,sinθ12等的简写。 目前实验给出的数据:

θ12 = 13.04±0.05°
θ13 = 0.201±0.011°
θ23 = 2.38±0.06°
δ13 = 1.20±0.08

实验上CKM矩阵参数满足s13<<s23<<s12<<1。 描写这一重要特性的一个常用参数化表示是由美国物理学家林肯·沃芬斯坦给出的。记

截止到λ3,CKM矩阵为[6]

么正三角形

幺正三角形
幺正三角形

CKM矩阵也可用所谓的幺正三角形来图像表示。最常见的是正交关系

用测量最精确的项(VcdV*cb)来归一,此关系可以表示为复平面上的三角形,其三顶点坐标分别为(0,0),(1,0) 和(),如右图所示。它的面积与位相参数表示化无关,是刻划CP破坏的不变量。文献中称之为雅尔斯廓格()不变量。

数学推导

CKM矩阵的数学推导相当平庸。首先任意一个三维矩阵可以写成欧拉形式V=V2V1V3,其中对角块矩阵V1V2V3有以下形式(X代表非零元)

其次注意到任意一个二维幺正矩阵可以表为(εηρ为幺模复数,c=cosθs=sinθ

由此

因此可以通过一系列对角幺正矩阵作矩阵变换

使得

在上式中V2'仍是与V2同形的一般幺正矩阵, 但可以继续在V上左、右相乘与V2'和V3'对易的对角矩阵,即 diag(αββ)型矩阵(αβ幺模),使得

最后将所有的对角(相位)变换矩阵吸收到夸克波函数中去,V2',V1',V3'相乘即得CKM矩阵。

参数测量

CKM矩阵元实验测定和最新数据的详细资料,可参阅粒子数据组的网页和出版物[7]

沃尔芬斯坦参数:

和雅尔斯廓格不变量:

獨立變量的計算

考慮有 N 代夸克 (2N 種風味),那麼

  • 一個 N × N 的么正矩陣需要 N2 個實係數來給定 (因為么正矩陣滿足 VV = I,其中 VV 的共軛轉置,而 I 是單位矩陣) 。
  • 其中 2N  1 個係數不是物理上實際的,因為每個夸克都可以吸收一個相位 (質量本徵態和弱作用力本徵態各可吸收一個),而全部的共同相位是不可觀測的。因此,不受相位選擇影響的自由變數總共有 N2  (2N  1) = (N  1)2 個。
    • 這其中有 N(N  1)/2 個是旋轉角度,稱為夸克的混合角。
    • 而剩下的 (N  1)(N  2)/2 個就是造成 CP破壞的複數相位。

N = 2 時,獨立變量只有一個,就是兩代夸克間的混合角。當初只有兩代夸克被發現時,這是第一種 CKM 矩陣。其角度稱為卡比博角度,由尼古拉·卡比博發明。

在標準模型中,N = 3,總共有三個混合角和一個 CP 破壞相位。

与重子生成的关系

CP破坏是解釋自宇宙大爆炸以來僅物質存在(即反物質消失)的沙卡洛夫三条件(热力学非平衡,重子数不守恒,C和CP对称性不守恒)之一,因此CKM矩阵在粒子宇宙学中有着重要应用。但是现在公认的结论是實驗測量到CP破壞的數量級,遠不足以解释观测到的重子不对称度,因此重子生成必须有其他的来源。

参考资料

书籍

论文

  1. N. Cabibbo. . Physical Review Letters. 1963, 10: 531–533.
  2. M. Kobayashi and T. Maskawa. . Progress in Theoretical Physics. 1973, 49: 652–657.
  3. . Nobel Foundation. [2008-10-09]. (原始内容存档于2008-10-08).
  4. 闫同民. . 物理双月刊: 354–357. 2013 [2013-10-02]. (原始内容存档于2013-10-04). 参数|journal=与模板{{cite web}}不匹配(建议改用{{cite journal}}|website=) (帮助); |volume=被忽略 (帮助)
  5. L.L. Chau and W.-Y. Keung. . Physical Review Letters. 1984, 53: 1802.
  6. L. Wolfenstein. . Physical Review Letters. 1983, 51: 1945–1947.
  7. K. Nakamura; et al. (PDF). Journal of Physics G. 2010, 37 (75021): 150 [2012-11-05]. (原始内容存档 (PDF)于2018-07-14).

外部链接

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.