古戈爾普勒克斯

古戈爾普勒克斯googolplex)是指(10的古戈爾次方),也就是:

古戈爾普勒克斯
古戈爾普勒克斯

<<   100  101  102  103  104  105  106  107  108  109 >>


10 10100 1010100 101010100
命名
小寫十的一溝無量大數次方
十的一古戈爾次方
一古戈爾普勒克斯
大寫拾的壹溝無量大數次方
拾的壹古戈爾次方
壹古戈爾普勒克斯
性質
質因數分解
表示方式

這是1後有古戈爾(googol,)個0。美國數學家愛德華·卡斯納的侄子米爾頓·西羅蒂造出古戈爾一詞,卡斯納为古戈尔直接派生出古戈爾普勒克斯一詞。

因為一古戈爾比已知宇宙基本粒子數目要多(後者估計在之間),而一古戈爾普勒克斯的零的數目為一古戈爾,假設一普朗克時間可以寫一個零,需要約 倍現在宇宙的年齡的時間才能寫完。同時,假設一個零的大小為一普朗克長度,一古戈爾普勒克的長度相當於 個現今可觀測宇宙的直徑。所以要把古戈爾普勒克斯以十進位寫出來是不可能的,至少在初等函数范围内,这是一个“遥不可及”的数。

即使這樣,古戈爾普勒克斯仍是小於一些特別定義出來的巨大數,比如用高德納箭號表示法斯坦豪斯-莫澤表示法表示的數,或是葛立恆數。更簡單的,可以用比古戈爾普勒克斯少的符號數目表示更大的數,例如這三個數比古戈爾普勒克斯大得多:

性質

  • 半完全數。由於所有半完全數的倍數都是半完全數[1],而100、1000都是半完全數[2],因此10050即10100也為半完全數,其中100為本原半完全數20的倍數[3]。由於古戈爾是半完全數,而古戈爾普勒克斯為古戈爾的倍數,因此古戈爾普勒克斯也是半完全數。
  • 過剩數。由於所有過剩數的倍數都是過剩數[4]:134,而10100是一個過剩數,且1010100是10100的倍數,因此1010100也是過剩數。
  • 十进制節儉數。1010100是一個10100+1數,但其質因數分解含指數的數總和只有

參見

外部連結

參考

  1. Zachariou, Andreas; Zachariou, Eleni. . Bull. Soc. Math. Grèce, n. Ser. 1972, 13: 12–22. MR 0360455. Zbl 0266.10012.
  2. Sloane, N.J.A. (编). . The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. Sloane, N.J.A. (编). . The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. Tattersall, James J. 2nd. Cambridge University Press. 2005. ISBN 978-0-521-85014-8. Zbl 1071.11002.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.