有理数
数学上,可以表达为两个整数比的数(, )被定义为有理数,例如,0.75(可被表达为);整数和整数分数统称为有理数。
的数 | ||
基本 | ||
| ||
延伸 | ||
| ||
其他 | ||
与有理数相對的是无理数,如无法用整数比表示。
有理数与分數形式的区别,分數形式是一种表示比值的记法,如 分數形式是无理数。
所有有理数的集合表示为Q,Q+,或。定义如下:
词源
有理数在英文中称作rational number,来自拉丁语rationalis,意为理性的;词根ratio,拉丁语意为理性、计算。[1]代表“比例”的英文ratio一词在历史上出现得要比有理数(rational number)一词更晚,前者最早有记录是1660,而后者是1570年。[2][3]
形式构建
数学上可以将有理数定义为建立在整数的有序对上的等价类,这里不为零。我们可以对这些有序对定义加法和乘法,规则如下:
为了使,定义等价关系如下:
这种等价关系与上述定义的加法和乘法上是一致的,而且可以将Q定义为整数有序对关于等价关系~的商集:。例如:两个对和是相同的,如果它们满足上述等式。(这种构建可用于任何整数环,参见商域。)
性质
有理数是特征为0的域最小的一个:所有其他特征为0的域都包含的一个拷贝(即存在一个从到其中的同构映射)。
的代数闭包,例如有理数多项式的根的域,是代数数域。
所有有理数的集合是可数的,亦即是說的基數(或勢)與自然數集合相同,都是阿列夫數,這是因為可以定義一個從有理數集映至自然數集合的笛卡爾積 的單射函數,而是可數集合之故。因为所有实数的集合是不可数的,所以从勒贝格测度来看,可以认为绝大多数实数不是有理数。
有理数的序是个稠密序:任何两个有理数之间存在另一个有理数,事实上是存在无穷多个。此外,有理數集也沒有最大和最小元素,所以是無端點的可數稠密全序()。康托爾同構定理說明,任何無端點的可數稠密全序必定序同構於有理數的序,換言之,若不辨同構之異,則有理數的大小序是唯一具此性質的序結構。
实数
有理数是实数的稠密子集:每个实数都有任意接近的有理数。一个相关的性质是,僅有理数可化為有限连分数。
依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。采用度量,有理数构成一个度量空间,这是上的第三个拓扑。幸运的是,所有三个拓扑一致并将有理数转化到一个拓扑域。有理数是非局部紧致空间的一个重要的实例。这个空间也是完全不连通的。有理数不构成完备的度量空间;实数是的完备集。
参见
- 浮点数
- 尼云定理
参考文献
- . asait.world.coocan.jp. [2020-10-09]. (原始内容存档于2016-01-12).
- 2nd. Oxford University Press. 1989. Entry ratio, n., sense 2.a.
- 2nd. Oxford University Press. 1989. Entry rational, a. (adv.) and n.1, sense 5.a.
- 菲赫金哥尔茨; 杨弢亮 译; 叶彦谦 译; 郭思旭 校. 第8版. 高等教育出版社. : 2. ISBN 5-9221-0436-5.