负数
负数(英文:Negative number),在数学上指小于0的实数,如−2、−3.2和−807.5,与正数相对。负數本身是一個不可數的無限集合。這個集合在数学上通常用粗體R−或来表示。负数与0统称非正数。
的数 | ||
基本 | ||
| ||
延伸 | ||
| ||
其他 | ||
负数的历史
负整数可以被认为是自然数的扩展,使得等式对任意和都有意义。相对而言,其他数的集合都是从自然数通过逐步扩展得到的。
负数在表示小于 0 的值的时候非常有用。例如,在会计学上,它可以被用来表示負債,而且通常以紅色表示(若不帶負數符號則加上括號),所以又稱「赤字」。
自从漢代,中国数学家就已经了解負數和零的概念了。[1] 公元1世纪的《九章算術》说“正負術曰:同名相除,異名相益,正無入負之,負無入正之。其異名相除,同名相益,正無入正之,負無入負之。”[2](這段話的大意是“减法:遇到同符号数字应相减其数值,遇到异符号数字应相加其数值,零减正数的差是負數,零减負數的差是正数。”)。以上文字里的“無入”通常被数学历史家认为是零的概念。
尽管中国古人首先发现并应用了负数,但却并没有从理性方面讨论负数存在的意义和本质,这可能是文化习惯导致的。对负数精确的定义,和其根本属性的讨论,是由近代西方数学家首先完成的。[3]
西方最早在数学上使用负数的文獻紀錄,是由古印度數學家婆羅摩笈多於公元628年完成的《婆罗摩历算书》。它的出现是为了表示负资产或债务。在很大程度上,欧洲数学家直到17世纪才接受负数的概念。
负数的四則運算
口訣 | 釋義 | |||||||
加法 | 減法 | 乘法 | 除法 | |||||
被乘數 | 乘數 | 積 | 被除數 | 除數 | 商 | |||
正正得正 | a + (+b) = a + b | - | 正 | 正 | 正 | 正 | 正 | 正 |
正負得負 | a + (−b) = a − b | - | 正 | 負 | 負 | 正 | 負 | 負 |
負正得負 | - | a − (+b) = a − b | 負 | 正 | 負 | 負 | 正 | 負 |
負負得正 | - | a − (−b) = a + b | 負 | 負 | 正 | 負 | 負 | 正 |
兩個符號一樣 | 兩個符號不同 |
得正 | 得負 |
减法
一个较大的正数减去一个较小的正数将得到一个正数
一个较小的正数减去一个较大的正数将得到一个负数:
任意负数减去一个正数总得到一个负数:
减去一个负数相当于加上相应的正数: