In statistics, the Bingham distribution, named after Christopher Bingham, is an antipodally symmetric probability distribution on the n-sphere.[1] It is a generalization of the Watson distribution and a special case of the Kent and Fisher–Bingham distributions.

The Bingham distribution is widely used in paleomagnetic data analysis,[2] and has been used in the field of computer vision.[3][4][5]

Its probability density function is given by

which may also be written

where x is an axis (i.e., a unit vector), M is an orthogonal orientation matrix, Z is a diagonal concentration matrix, and is a confluent hypergeometric function of matrix argument. The matrices M and Z are the result of diagonalizing the positive-definite covariance matrix of the Gaussian distribution that underlies the Bingham distribution.

See also

References

  1. Bingham, Ch. (1974) "An antipodally symmetric distribution on the sphere". Annals of Statistics, 2(6):1201–1225.
  2. Onstott, T.C. (1980) "Application of the Bingham distribution function in paleomagnetic studies". Journal of Geophysical Research, 85:1500–1510.
  3. S. Teller and M. Antone (2000). Automatic recovery of camera positions in Urban Scenes
  4. Haines, Tom S. F.; Wilson, Richard C. (2008). Computer Vision – ECCV 2008 (PDF). Lecture Notes in Computer Science. Vol. 5304. Springer. pp. 780–791. doi:10.1007/978-3-540-88690-7_58. ISBN 978-3-540-88689-1. S2CID 15488343.
  5. "Better robot vision: A neglected statistical tool could help robots better understand the objects in the world around them". MIT News. October 7, 2013. Retrieved October 7, 2013.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.