Names | DAVINCI (2015–2019) DAVINCI+ (2019–2021) DAVINCI (2021–) |
---|---|
Mission type | Orbiter and Atmospheric probe |
Operator | NASA / Goddard Space Flight Center |
Spacecraft properties | |
Spacecraft |
|
Manufacturer | Lockheed Martin / Goddard Space Flight Center |
Start of mission | |
Launch date | 6–23 June 2029 (draft) [1] |
Rocket | Atlas V or equivalent |
End of mission | |
Landing date | June 2031[1] |
Landing site | Alpha Regio[2] |
Venus orbiter | |
Spacecraft component | orbiter |
Orbital insertion | 2031–2032[2] |
Venus atmospheric probe | |
Spacecraft component | probe |
Atmospheric entry | 2031–2032[2] |
Instruments | |
| |
DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) is a planned mission for an orbiter and atmospheric probe to the planet Venus. Together with the separate VERITAS mission, which will also study Venus, it was selected by NASA on 2 June 2021 to be part of their Discovery Program.[3][4][5] Its acronym is inspired by Leonardo da Vinci in honor of his scientific innovations, aerial sketches and constructions.
DAVINCI will send both an orbiter and a descent probe to Venus.[6] The orbiter will image Venus in multiple wavelengths from above, while the descent probe will study the chemical composition of Venus's atmosphere and take photographs during descent.[7][8] The DAVINCI probe will travel through the Venusian atmosphere, sampling the atmosphere, and returning measurements down to the surface. These measurements are important to understanding the origin of the atmosphere, how it has evolved, and how and why it is different from the atmosphere of Earth and Mars. The measurements taken by DAVINCI will investigate the possible history of water on Venus and the chemical processes at work in the unexplored lower atmosphere. Before it reaches the surface, the DAVINCI probe will capture high-resolution images of the planet's ridged terrain ("tesserae"), returning the first images of the planet's surface since the Soviet Venera 14 lander in 1982. It will also collect data for studying the planet's origin, and its tectonic and weathering history.
Proposal development
DAVINCI was one of the dozens of proposals submitted in 2015 to potentially become Mission #13 of NASA's Discovery Program. NASA's planned budget for Discovery Mission #13 was US$450 million. On September 30, 2015, DAVINCI was selected as one of five finalists.[9] On January 4, 2017, two competing proposals, Lucy and Psyche, defeated DAVINCI to be selected as the 13th and 14th Discovery missions, respectively.[10]
The DAVINCI proposal was revised and proposed as DAVINCI+ for the Discovery Program in 2019,[11] and selected for Phase A funding on February 13, 2020.[12][6] Its Concept Study Report was submitted in November 2020. In June 2021, NASA selected DAVINCI+ as one of the next Discovery class missions.[13][3] The mission's name was reverted to DAVINCI after selection.[14]
The DAVINCI Principal Investigator is James B. Garvin of NASA's Goddard Space Flight Center (GSFC) and the Deputy Principal Investigators are Stephanie Getty and Giada Arney, both also of GSFC.[15]
A separate Venus mission, VERITAS, was selected at the same time, with the objective of mapping the surface features of Venus with radar to shed light into its history, evaluate this possibility of plate tectonics and volcanism, and understand how the planet developed so differently from Earth.[16]
Objectives
Following five orbital missions to Venus (Venera 15, Venera 16, Magellan, Venus Express, and Akatsuki) focused on remote sensing observations, DAVINCI will be the first probe to enter the atmosphere of Venus since the Soviet VeGa probes in 1985,[17] and the first atmospheric probe by NASA since the Pioneer Venus Multiprobe mission in 1978. DAVINCI will make direct measurements in the lower two-thirds of the atmospheric mass.
DAVINCI scientists will explore how Venus's atmosphere formed and then changed over time, including what happened to the water that is thought to have once existed on the planet. The findings will help scientists understand why Venus and Earth took such different paths as they matured,[18] and provide another point of comparison for studies of rocky exoplanets.
DAVINCI's in situ measurements of the atmosphere will answer multiple questions regarding Venus's atmospheric composition as currently formulated for the National Research Council Planetary Science Decadal Survey's Venus In Situ Explorer (VISE).
The descent probe is not intended to operate once it touches down on the surface of Venus. However, there is a chance it might survive the impact at around 25 miles per hour (12 meters per second). In that case its instruments could continue operation for up to 17–18 minutes under ideal conditions.[19]
Goals
- Understand the origin of the Venus's atmosphere, how it has evolved, and how and why it is different from the atmospheres of Earth and Mars.
- Investigate the possibility of an ocean in Venus's past and the chemical processes at work in the lower Venusian atmosphere.
- Obtain high resolution pictures of the geological features (tesserae) of Venus, which will help to assess whether Venus has plate tectonics, and better understand how terrestrial planets are formed.
Scientific payload
DAVINCI is designed to address high-priority NASA decadal science by targeting noble gases, trace gases, and their isotopes, as well as temperature, pressure, winds, and imaging at Venus.
Descent probe instruments
On the descent probe, DAVINCI's Venus Analytic Laboratory (VAL) instruments will provide high-fidelity synergistic measurements throughout the probe's descent, particularly in the upper clouds and the unexplored near-surface environment. VAL design is based on the Sample Analysis at Mars (SAM) instrument on the Curiosity rover, which measured the chemical and isotopic composition of the Martian atmosphere, and found the first definitive evidence of organics on Mars.[20] DAVINCI's four science instruments are:[2][18][21]
Venus Mass Spectrometer (VMS)
Proposed to be built by NASA's Goddard Space Flight Center (GSFC), VMS will provide the first comprehensive in situ surveys of noble and trace gases at Venus, and has the capability to discover new gas species in the Venusian atmosphere. VMS is similar to Curiosity's quadrupole mass spectrometer (QMS).[22]
Venus Tunable Laser Spectrometer (VTLS)
Proposed to be built by NASA's Jet Propulsion Laboratory (JPL), VTLS will provide the first highly sensitive in situ measurements of targeted trace gases and associated isotope ratios at Venus, addressing key science questions about chemical processes in the upper clouds and the near-surface environment. VTLS is similar to Curiosity's tunable laser spectrometer (TLS).
Venus Atmospheric Structure Investigation (VASI)
Proposed to be built by GSFC using flight-proven sensors, and led by Ralph Lorenz and Dave Atkinson of the Applied Physics Laboratory and JPL respectively, VASI will provide measurements of the structure and dynamics of the Venusian atmosphere during entry and descent, providing context for chemistry measurements and enabling reconstruction of the probe's descent.[23]
Venus Descent Imager (VenDI)
To be built by Malin Space Science Systems (MSSS), VenDI will provide high-contrast images of the tessera terrain at the descent location. VenDI is similar to Curiosity's Mast Camera (Mastcam), Mars Descent Imager (MarDI), and Mars Hand Lens Imager (MAHLI).
Orbiter instruments
On the orbiter, a multi-spectral camera will image the planet in the UV and the 1-micron Near IR band, with a wide-field camera giving global coverage. The imaging will be done during two Venus flybys before the probe deployment, followed by an orbital remote sensing phase to complement the descent probe.[6][18]
See also
- EnVision, a planned Venus orbiter
- Galileo orbiter's Jupiter atmospheric probe
- Venera, a series of Soviet probes and landers
- Pioneer Venus Multiprobe
References
- 1 2 Garvin J, et al. (2022). "Revealing the Mysteries of Venus: The DAVINCI Mission". Planetary Science Journal (published 24 May 2022). 3 (117): 117. arXiv:2206.07211. Bibcode:2022PSJ.....3..117G. doi:10.3847/PSJ/ac63c2. S2CID 249038417.
- 1 2 3 4 Steigerwald, William; Jones, Nancy Neal (2 June 2021). "NASA to Explore Divergent Fate of Earth's Mysterious Twin with Goddard's DAVINCI". NASA. Retrieved 2 June 2021. This article incorporates text from this source, which is in the public domain.
- 1 2 Potter, Sean (2 June 2021). "NASA Selects 2 Missions to Study "Lost Habitable" World of Venus". NASA. Retrieved 2 June 2021.
- ↑ Chang, Kenneth (2 June 2021). "New NASA Missions Will Study Venus, a World Overlooked for Decades - One of the spacecraft will probe the hellish planet's clouds, which could potentially help settle the debate over whether they are habitable by floating microbes". The New York Times. Retrieved 2 June 2021.
- ↑ Roulette, Joey (2 June 2021). "NASA will send two missions to Venus for the first time in over 30 years". The Verge. Retrieved 2 June 2021.
- 1 2 3 Garvin, James; et al. (2020). DAVINCI+: Deep Atmosphere of Venus Investigation of Noble Gases, Chemistry, and Imaging, Plus (PDF). 51st Lunar and Planetary Science Conference. Retrieved 7 June 2021.
- ↑ Brown, Dwayne C.; Cantillo, Laurie (30 September 2015). "NASA Selects Investigations for Future Key Planetary Mission". NASA News. Washington, D.C. Retrieved 1 October 2015.
- ↑ "NASA announces five Discovery proposals selected for further study". The Planetary Society. 1 October 2015. Retrieved 1 October 2015.
- ↑ "Small Bodies Dominate NASA's Latest Discovery Competition". SpaceNews.com. 7 July 2015. Retrieved 4 March 2016.
- ↑ "NASA Selects Two Missions to Explore the Early Solar System". 4 January 2017. Retrieved 4 January 2017.
- ↑ Hall, Shannon (12 June 2019). "Venus, Earth's Evil Twin, Beckons Space Agencies," Scientific American.
- ↑ Brown, Katherine (13 February 2020). "NASA Selects 4 Possible Missions to Study Secrets of the Solar System". NASA.
- ↑ "Discovery 2019 Announcement of Opportunity" (PDF). NASA Solicitation and Proposal Integrated Review and Evaluation System. NASA.
- ↑ Cordova, Jaime (17 September 2021). "Mission to Venus Could Help Solve an Atmospheric Mystery". EOS. Retrieved 3 February 2023.
- ↑ "James "Jim" Brian Garvin". NASA. Retrieved 7 February 2021.
- ↑ Strickland, Ashley. "NASA Venus missions: DAVINCI and VERITAS will uncover the secrets of Earth's twin". CNN. Retrieved 3 June 2021.
- ↑ "The DAVINCI spacecraft". phys.org. Retrieved 4 March 2016.
- 1 2 3 Widemann, Thomas; Smrekar, Suzanne E.; Garvin, James B.; Straume-Lindner, Anne Grete; Ocampo, Adriana C.; Schulte, Mitchell D.; Voirin, Thomas; Hensley, Scott; Dyar, M. Darby; Whitten, Jennifer L.; Nunes, Daniel C.; Getty, Stephanie A.; Arney, Giada N.; Johnson, Natasha M.; Kohler, Erika (3 October 2023). "Venus Evolution Through Time: Key Science Questions, Selected Mission Concepts and Future Investigations". Space Science Reviews. 219 (7): 56. Bibcode:2023SSRv..219...56W. doi:10.1007/s11214-023-00992-w. hdl:20.500.11850/637406. ISSN 1572-9672.
- ↑ Adkins, Jamie (2 June 2022). "DAVINCI Mission To Take the Plunge Through Massive Atmosphere of Venus". NASA. Retrieved 13 July 2022.
- ↑ Steigerwald, Bill (17 April 2015). "NASA Goddard Instrument's First Detection of Organic Matter on Mars". NASA. Retrieved 4 March 2016.
- ↑ Glaze, Lori; Garvin, James; N., Johnson; Atkinson, D.; Atreya, S.; Blacksberg, J.; Brinckerhoff, W.; Campbell, B.; et al. "DAVINCI: DEEP ATMOSPHERE VENUS INVESTIGATION OF NOBLE GASES, CHEMISTRY, AND IMAGING" (PDF). Universities Space Research Association. Retrieved 15 May 2021.
- ↑ Steigerwald, Bill (19 August 2021). "The briefcase-sized chemistry lab headed to Venus". NASA. Retrieved 16 March 2022.
- ↑ Glaze, Lori; Garvin, James; Robertson, Brent; Johnson, Natasha; Amato, Michael; Thompson, Jessica; Goodloe, Colby; Everett, Dave. "DAVINCI: Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging" (PDF). NASA Technical Reports Server. NASA. Archived (PDF) from the original on 15 May 2021. Retrieved 15 May 2021.