In probability theory, the Feldman–Hájek theorem or Feldman–Hájek dichotomy is a fundamental result in the theory of Gaussian measures. It states that two Gaussian measures and on a locally convex space are either equivalent measures or else mutually singular:[1] there is no possibility of an intermediate situation in which, for example, has a density with respect to but not vice versa. In the special case that is a Hilbert space, it is possible to give an explicit description of the circumstances under which and are equivalent: writing and for the means of and and and for their covariance operators, equivalence of and holds if and only if[2]

  • and have the same Cameron–Martin space ;
  • the difference in their means lies in this common Cameron–Martin space, i.e. ; and
  • the operator is a Hilbert–Schmidt operator on

A simple consequence of the Feldman–Hájek theorem is that dilating a Gaussian measure on an infinite-dimensional Hilbert space (i.e. taking for some scale factor ) always yields two mutually singular Gaussian measures, except for the trivial dilation with since is Hilbert–Schmidt only when

See also

References

  1. Bogachev, Vladimir I. (1998). Gaussian Measures. Mathematical Surveys and Monographs. Vol. 62. Providence, RI: American Mathematical Society. doi:10.1090/surv/062. ISBN 0-8218-1054-5. (See Theorem 2.7.2)
  2. Da Prato, Giuseppe; Zabczyk, Jerzy (2014). Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications. Vol. 152 (Second ed.). Cambridge: Cambridge University Press. doi:10.1017/CBO9781107295513. ISBN 978-1-107-05584-1. (See Theorem 2.25)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.