The following are lists of extremes among the known exoplanets. The properties listed here are those for which values are known reliably. It is important to note that the study of exoplanets is one of the most dynamic emerging fields of science, and these values may change wildly as new discoveries are made.

Extremes from Earth's viewpoint

Title Planet Star Data Notes
Most distant discovered SWEEPS-11 / SWEEPS-04 SWEEPS J175902.67βˆ’291153.5 / SWEEPS J175853.92βˆ’291120.6 27,710 light-years[1] Several candidate extragalactic planets have been detected.

The most distant potentially habitable planet confirmed is Kepler-1606b, at 2,870 light-years distant,[2] although the unconfirmed planet KOI-5889.01 is over 5,000 light-years distant.

On 31 March 2022, K2-2016-BLG-0005Lb was reported to be the most distant exoplanet discovered by Kepler telescope, at 17,000 light-years away.[3]

Least distant Proxima Centauri b, c and d Proxima Centauri 4.25 light-years Proxima Centauri b and d are the closest rocky exoplanets, b is the closest potentially habitable exoplanet known, and c is the closest mini-Neptune and potentially ringed planet. As Proxima Centauri is the closest star to the Sun (and will stay so for the next 25,000 years), this is an absolute record.
Most distant directly visible CT Chamaeleontis b CT Chamaeleontis 622 light-years[4] The disputed planet candidate CVSO 30 c may be more distant, at 1,200 light-years.
Closest directly visible COCONUTS-2b L 34-26 35.5 light-years[4] WISE 1217+1626 B is closer, but is generally considered a brown dwarf. Proxima Centauri c (confirmed in 2020 using archival Hubble data from 1995+) may have been directly imaged.[5]
Star with the brightest apparent magnitude with a planet Pollux b Pollux[6] Apparent magnitude is 1.14 Alpha Centauri A (apparent magnitude 0.01) has a unconfirmed planet candidate. The evidence of planets around Vega with an apparent magnitude of 0.03 is strongly suggested by circumstellar disks surrounding it.[7] As of 2021, a candidate planet around Vega has been detected.[8]
Star with the faintest apparent magnitude with a planet MOA-bin-29Lb MOA-bin-29L Apparent magnitude is 44.61[4]
Largest angular distance separation from its host star COCONUTS-2b COCONUTS-2 594 arcseconds[9]

Planetary characteristics

Title Planet Star Data Notes
Least massive PSR B1257+12 b PSR B1257+12 0.020Β±0.002 M🜨[4] The extrasolar planetesimal WD 1145+017 b is less massive, at 0.00067 MEarth.[9]
Most massive The candidate for the most massive planet is contentious, as it is difficult to distinguish between a highly massive planet and a brown dwarf (the border between them approximately from 13 to 80 MJ). So it is estimated the largest planets are approximately a dozen Jupiter masses.
Largest radius Proplyd 133-353 7.4Β±0.3 – 8Β±1.1 RJ[10][lower-alpha 1] Proplyd 133-353 could be a sub-brown dwarf or an rogue planet, with a photoevaporating disk.

HAT-P-67b has the largest accurately measured radius, at 2.085+0.096
βˆ’0.071
 RJ
.[11]

Smallest radius Kepler-37b Kepler-37 0.296Β±0.037 R🜨[4] The extrasolar planetesimals SDSS J1228+1040 b[12] and WD 1145+017 b are smaller.
Most dense TOI-4603b HD 245134 14.1+1.7
βˆ’1.6
g/cm3 [13]
TOI-4603b has a mass of 12.89+0.58
βˆ’0.57
MJ and a radius of 1.042+0.038
βˆ’0.035
RJ.[14]

KELT-1b is denser, with 22.1+5.62
βˆ’9.16
g/cm3.[15] But, with a mass of 27.23 MJ, it is likely a brown dwarf.

Kepler-131c might be more dense at 77.7+55
βˆ’55
g/cm3,[16] but the value is very uncertain.

Least dense Kepler-51c, b and/or possibly d[17] Kepler-51[17] ~ 0.03 g/cm3[17] The densities of Kepler-51 b and c have been constrained to be below 0.05 g/cm3 (expected value 0.03 g/cm3 for each). The density of Kepler-51d is determined to be 0.046 Β± 0.009 g/cm3.[17]
Hottest (irradiated hot Jupiter) KELT-9b KELT-9 4,050Β±180 K[4](3777 Β°C) The unconfirmed planets Kepler-70b and Kepler-70c may be hotter, both at >6,800 K.[18]
Hottest (self-luminous) AB Aurigae b AB Aurigae 3,800 K (3,530 Β°C)[19]
Coldest OGLE-2005-BLG-390Lb OGLE-2005-BLG-390L 50 K (βˆ’223.2 Β°C)[20] The disputed planet Proxima Centauri c may be cooler, at 39 K (βˆ’234.2 Β°C).[21]
Highest albedo LTT 9779 b LTT 9779 0.8[22] For comparison, Earth is 0.3 and Venus is 0.76.
Lowest albedo TrES-2b GSC 03549-02811 Geometric albedo < 1%[23] Best-fit model for albedo gives 0.04% (0.0004).[18]
Youngest CI Tauri b CI Tauri 2 Myr[24] The candidate rogue planet / sub-brown dwarf Proplyd 133-353 is younger at 0.5 Myr.[25][26]
Oldest WASP-183b WASP-183 14.9Β±1.7 Gyr[4] The estimated age of the universe is 13.8 billion years, within the margin of error.

Orbital characteristics

Title Planet Star Data Notes
Longest orbital period
(Longest year)
COCONUTS-2b COCONUTS-2 1.1 million years[27] 2MASS J2126–8140 previously held this record at ~900,000 years.
Shortest orbital period
(Shortest year)
SWIFT J1756.9-2508 b SWIFT J1756.9-2508 48 minutes, 56.5 seconds[28] K2-137b has the shortest orbit around a main-sequence star (an M dwarf) at 4.31 hours.[29]
Most eccentric orbit HD 20782 b[30] HD 20782 0.956Β±0.004 [31] Record among confirmed planets. The disproven planet candidate at VB 10 was thought to have a higher eccentricity of 0.98.[32] HD 80606 b previously held this record at 0.93226+0.00064
βˆ’0.00069
.
Highest orbital inclination HD 204313 e HD 204313 176.092Β°+0.963Β°
βˆ’2.122Β°
[33][34]
Lowest orbital inclination HD 331093 b HD 331093 >0.3704Β° [35][34] HD 43197 c has the lowest orbital inclination that is not a lower limit, of 11.42Β°+5.388Β°
βˆ’3.07Β°
.[34]
Largest orbit around a single star COCONUTS-2b COCONUTS-2 7,506+5,205
βˆ’2,060
 AU
[4]
Projected separation of 6,471 AU.[27] Next largest are 2MASS J2126–8140 with 6,900 AU and HD 106906 b[36] with ~738 AU.
Smallest orbit PSR J1719-1438 b PSR J1719βˆ’1438 0.0044 AU [37]
Smallest orbit around binary star Kepler-47b Kepler-47AB 0.2877+0.0014
βˆ’0.0011
 AU
[4]
[38]
Smallest ratio of semi-major axis of a planet orbit to binary star orbit Kepler-16b Kepler-16AB 3.14 Β± 0.01 [39]
Largest orbit around binary star SR 12 (AB) c SR 12 AB β‰ˆ1100 AU[40] SR 12 (AB) c has a mass of 0.013Β±0.007 Mβ˜‰.[40]

ROXs 42B (AB) b is lower in mass at 9.0+6
βˆ’3
MJ, however also in projected separation of β‰ˆ150 AU.[41]

DT Virginis c, also known as Ross 458 (AB) c, at a projected separation of β‰ˆ1200 AU, with several mass estimates below the deuterium burning limit, has a latest mass determination of 27Β±4 MJ.[42]

Largest orbit around a single star in a multiple star system ROXs 12 b ROXs 12 210Β±20 AU[4]
Largest separation between binary stars with a circumbinary planet SR 12 (AB) c SR 12 AB β‰ˆ26 AU[40] SR 12 (AB) c has a mass of 0.013Β±0.007 Mβ˜‰ at a projected separation of β‰ˆ1100 AU.[40]

FW Tauri b orbits at a projected separation of 330Β±30 AU around a β‰ˆ11 AU separated binary.[43] It was shown to be more likely a 0.1 Mβ˜‰ star surrounded by a protoplanetary disk than a planetary-mass companion.[44]

Closest orbit between stars with a planet orbiting one of the stars OGLE-2013-BLG-0341LBb OGLE-2013-BLG-0341LB ~12–17 AU
(10 or 14 AU projected distance)[45]
OGLE-2013-BLG-0341L b's semi-major axis is 0.7 AU.[45]
Smallest semi-major-axis difference between consecutive planets Kepler-70b and Kepler-70c[18] Kepler-70 0.0016 AU (240,000 km) During closest approach, Kepler-70c would appear 5 times the size of the Moon in Kepler-70b's sky.
Smallest semi-major axis ratio between consecutive planets Kepler-36b and Kepler-36c Kepler-36 11% Kepler-36b and c have semi-major axes of 0.1153 AU and 0.1283 AU, respectively, c is 11% further from star than b.

Stellar characteristics

Title Planet Star Data Notes
Highest metallicity HD 126614 Ab HD 126614 A +0.56 dex Located in a triple star system.
Lowest metallicity K2-344b K2-344 βˆ’0.95Β±0.02 dex[4] BD+20Β°2457 may be the lowest-metallicity planet host ([Fe/H]=βˆ’1.00); however, the proposed planetary system is dynamically unstable.[46] Kapteyn's Star may also be the lowest-metallicity planet host ([Fe/H]=βˆ’0.99Β±0.04), but its planets are most likely artifacts of stellar activity and rotation.[47]

Planets were announced around even the extremely low-metallicity stars HIP 13044 and HIP 11952; however, these claims have since been disproven.[48]

Highest stellar mass Mu2 Scorpii b Mu2 Scorpii 9.1Β±0.3 Mβ˜‰[49] M51-ULS-1b, listed as a candidate planet with 4 sigma confidence, may be the planet with the highest-mass host star. The host is a massive O-class supergiant and a black hole orbiting each other at 0.8 AU, with a combined system mass of >60 solar masses. The planet is a Saturn-sized (0.72 Jupiter radii) object orbiting the black-hole/supergiant binary at 10 AU. The host stars giving off a combined 1 million solar luminosities, the planet receives the equivalent irradiation of 51 Pegasi b, which orbits its star at 0.045 AU. M51-ULS-1b would also be one of the youngest planets ever discovered, with a system age of <10 million years according to evolutionary models.[50]

Because M51-ULS-1b requires further confirmation, the object V921 Sco b, a 60-Jupiter-mass object orbiting a 20-solar-mass 30,000 K Herbig Haro B0IV-class subgiant at 835 AU, may actually be the record holder. Despite the large distance, V921 Sco b receives a comparable amount of irradiation as Mars, owing to the large mass and luminosity of the host star. At 20 solar masses, V921 Sco is the most massive object to host a substellar object. Normally, V921 Sco b would be considered a brown dwarf, but given the high mass of the host star, and the growing studies that confirm the correlation of more massive planets around more massive stars, this object could be considered a planet. Hatzes and Rauer quote an upper limit of 60 Jupiter masses for a core-accretion formation of high-mass gas giants, which is how heavy this object is. Furthermore, the Extrasolar Planets Encyclopedia lists objects up to 60 Jupiter masses as planets if they orbit stars.[51]

b Centauri has a mass of 6 solar masses.

The stars R126 (HD 37974) and R66 (HD 268835) in the Large Magellanic Cloud have masses of 70 and 30 solar masses and have dust discs but no planets have been detected yet.

Lowest stellar mass (main sequence) OGLE-2016-BLG-1195Lb OGLE-2016-BLG-1195L 0.078+0.016
βˆ’0.012
 Mβ˜‰
[4]
Could also be OGLE-2015-BLG-1771L, at 0.077+0.119
βˆ’0.044
 Mβ˜‰
.[4]
Lowest stellar mass (brown dwarf) 2MASS J1119-1137 B 2MASS J1119–1137 A 0.0033 Mβ˜‰ The system 2MASS J1119-1137 AB is a pair of binary rogue planets approximately 3.7 Jupiter masses each.[52]
Largest stellar radius HD 240237 b HD 240237 71.23Β±17.07 Rβ˜‰[4] HD 81817 and Mirach (Ξ² Andromedae) are larger, at 83.8Β±7.8 Rβ˜‰[4] and 86.4 Rβ˜‰[53] respectively, but their planetary companions may actually be brown dwarfs, and in the case of HD 81817 it companion may be a red dwarf. R Leonis (299 or 320-350 Rβ˜‰)[54][55] has a candidate planet. It is a Mira variable.
Smallest stellar radius (main sequence star) Teegarden's Star b and c Teegarden's Star 0.107Β±0.004 Rβ˜‰[4] VB 10 (0.102 Rβ˜‰)[56] has a disproven planet candidate.
Smallest stellar radius (brown dwarf) 2M 0746+20 b[57] 2M 0746+20 0.089 (Β± 0.003) Rβ˜‰ Planet's mass is very uncertain at 30.0 (Β± 25.0) MJup.
Smallest stellar radius (stellar remnant) PSR B0943+10 b and c[58][59][60] PSR B0943+10 0.000003737 Rβ˜‰[61]
Highest stellar luminosity Beta Andromedae b Mirach 1675 Lβ˜‰ [62][34] With a mass of 28.26+2.05
βˆ’2.17
 MJ
, the planet is likely a brown dwarf. Beta Cancri, with a luminosity of 794 Lβ˜‰, is the most luminous star to host a planet (Beta Cancri b) that is not a potential brown dwarf.[63][34]
Lowest stellar luminosity (main sequence star) TRAPPIST-1 planets TRAPPIST-1 0.0005495 Lβ˜‰ [64][34]
Oldest star WASP-183b WASP-183 14.9Β±1.7 Gyr[4] The estimated age of the universe is 13.8 billion years, within the margin of error.
Hottest star with a planet NSVS 14256825 b NSVS 14256825 40,000 K[65] NN Serpentis is hotter, with a temperature of 57,000 K[4], but the existence of its planets is disputed.[66]
Hottest main-sequence star with a planet b Centauri b b Centauri 18,310Β±320 K[67] V921 Scorpii b orbits a hotter star, at 30,000 K. Its host star is a 20-solar-mass B0IV-class subgiant.[51] However, at 60 Jupiter masses, it is not considered a planet under most definitions.

The candidate planet M51-ULS-1b's supergiant primary is an O5-class supergiant with an estimated surface temperature of 40,000 K, but as the star is a supergiant, does not count as on the main sequence.

Coolest star with a planet TRAPPIST-1b, c, d, e, f, g and h TRAPPIST-1 2,511 K Technically Oph 162225-240515, CFBDSIR 1458+10 and WISE 1217+1626 are cooler, but are classified as brown dwarfs.

System characteristics

Title System(s) Planet(s) Star(s) Notes
System with most planets Kepler-90 8 1 Tau Ceti currently has no confirmed planetary companion, although it has been proposed that the number of orbiting planets may be 8, 9 or even 10.[68] The four planets Tau Ceti e, f, g and h are considered as strong candidates.[69]

HD 10180 has six confirmed planets and potentially three more planets.[70]

System with most planets in habitable zone TRAPPIST-1 7 1 Four planets in this system (d, e, f and g) orbit within the habitable zone.[71]
System with most stars Kepler-64 PH1b (Kepler-64b) 4 PH1b has a circumbinary orbit.
Multiplanetary system with smallest mean semi-major axis (planets are nearest to their star) Kepler-42 b, c, d 1 Kepler-42 b, c and d have a semi-major axis of only 0.0116, 0.006 and 0.0154 AU, respectively.

Kepler-70 b, c and d (all unconfirmed and disputed) have a semi-major axis of only 0.006, 0.0076 and ~0.0065 AU, respectively.

Multiplanetary system with largest mean semi-major axis (planets are farthest from their star) TYC 8998-760-1 b, c 1 TYC 8998-760-1 b and c have a semi-major axis of 162 and 320 AU, respectively.[4]
Multiplanetary system with smallest range of semi-major axis (smallest difference between the star's nearest planet and its farthest planet) Kepler-42 b, c, d 1 Kepler-42 b, c and d have a semi-major axis of only 0.0116, 0.006 and 0.0154 AU, respectively. The separation between closest and furthest is only 0.0094 AU.

Kepler-70 b, c and d (all unconfirmed and disputed) have a semi-major axis of only 0.006, 0.0076 and ~0.0065 AU, respectively. The separation between closest and furthest is only 0.0016 AU.

Multiplanetary system with largest range of semi-major axis (largest difference between the star's nearest planet and its farthest planet) TYC 8998-760-1 b, c 1 TYC 8998-760-1 b and c have a semi-major axis of 162 and 320 AU, respectively.[4] The separation between closest and furthest is 158 AU.
System with smallest total planetary mass Kepler-444 b, c, d, e, f 3 The planets in the Kepler-444 system have radii of 0.4, 0.497, 0.53, 0.546 and 0.741 Earth radii, respectively. Due to their size and proximity to Kepler-444, these must be rocky planets, with masses close to that of Mars. For comparison, Mars has a mass of 0.105 Earth masses and a radius of 0.53 Earth radii.
System with largest total planetary mass Nu Ophiuchi b, c 1 Nu Ophiuchi b and c have masses of 22.206 and 24.662 Jupiter masses, respectively.[4] They may be brown dwarfs.
Multiplanetary system with smallest mean planetary mass Kepler-444 b, c, d, e, f 3 The planets in the Kepler-444 system have radii of 0.4, 0.497, 0.53, 0.546 and 0.741 Earth radii, respectively. Due to their size and proximity to Kepler-444, these must be rocky planets, with masses close to that of Mars. For comparison, Mars has a mass of 0.105 Earth masses and a radius of 0.53 Earth radii.
Multiplanetary system with largest mean planetary mass Nu Ophiuchi b, c 1 Nu Ophiuchi b and c have masses of 22.206 and 24.662 Jupiter masses, respectively.[4] They may be brown dwarfs.
Exo-multiplanetary system with smallest range in planetary mass, log scale (smallest proportional difference between the most and least massive planets) Teegarden's Star b, c 1 Teegarden b and c are estimated to have masses of 1.05 and 1.11 Earth masses, respectively.
Exo-multiplanetary system with largest range in planetary mass, log scale (largest proportional difference between the most and least massive planets) Kepler-37 b, d 1 Mercury and Jupiter have a mass ratio of 5,750 to 1. Kepler-37 d and b may have a mass ratio between 500 and 1,000, and Gliese 676 c and d have a mass ratio of 491.

See also

Notes and references

  1. ↑ "HEC: Top 10 Exoplanets". University of Puerto Rico at Arecibo. 5 December 2015. Archived from the original on 17 December 2013. Retrieved 1 August 2017.
  2. ↑ "Exoplanet-catalog-Exoplanet exploration-Kepler-1606b".
  3. ↑ Specht, D.; et al. (2023). "Kepler K2Campaign 9 – II. First space-based discovery of an exoplanet using microlensing". Monthly Notices of the Royal Astronomical Society. 520 (4): 6350–6366. arXiv:2203.16959. doi:10.1093/mnras/stad212.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 "Planetary Systems Composite Data". NASA Exoplanet Archive. Retrieved 12 December 2021.
  5. ↑ Gratton, R.; et al. (June 2020). "Searching for the near-infrared counterpart of Proxima c using multi-epoch high-contrast SPHERE data at VLT". Astronomy & Astrophysics. 638: A120. arXiv:2004.06685. Bibcode:2020A&A...638A.120G. doi:10.1051/0004-6361/202037594. S2CID 215754278.
  6. ↑ Lee, T. A. (October 1970), "Photometry of high-luminosity M-type stars", The Astrophysical Journal, 162: 217, Bibcode:1970ApJ...162..217L, doi:10.1086/150648
  7. ↑ "NASA, ESA Telescopes Find Evidence for Asteroid Belt Around Vega" (Press release). Whitney Clavin, NASA. 8 January 2013. Retrieved 4 March 2013.
  8. ↑ Hurt, Spencer A.; Quinn, Samuel N.; Latham, David W.; Vanderburg, Andrew; Esquerdo, Gilbert A.; Calkins, Michael L.; Berlind, Perry; Angus, Ruth; Latham, Christian A.; Zhou, George (21 January 2021). "A Decade of Radial-velocity Monitoring of Vega and New Limits on the Presence of Planets". The Astronomical Journal. 161 (4): 157. arXiv:2101.08801. Bibcode:2021AJ....161..157H. doi:10.3847/1538-3881/abdec8. S2CID 231693198.
  9. 1 2 "The Extrasolar Planet Encyclopaedia β€” Catalog Listing". Extrasolar Planets Encyclopaedia. 11 January 1995. Retrieved 4 May 2019.
  10. ↑ Fang, Min; Kim, Jinyoung Serena; Pascucci, Ilaria; Apai, DΓ‘niel; Manara, Carlo Felice (12 December 2016). "A candidate planetary-mass object with a photoevaporating disk in Orion". The Astrophysical Journal. 833 (2): L16. arXiv:1611.09761. Bibcode:2016ApJ...833L..16F. doi:10.3847/2041-8213/833/2/L16. ISSN 2041-8213.
  11. ↑ Manitowoc, Terrence Gollata (27 November 2018). "What's the diameter of the largest exoplanet found so far?". Astronomy Magazine. Retrieved 3 January 2024.
  12. ↑ "Planet SDSS J1228+1040 b". Extrasolar Planets Encyclopaedia. Retrieved 5 August 2019.
  13. ↑ Khandelwal, Akanksha; Sharma, Rishikesh; Chakraborty, Abhijit; Chaturvedi, Priyanka; Ulmer-Moll, SolΓ¨ne; Ciardi, David R.; Boyle, Andrew W.; Baliwal, Sanjay; Bieryla, Allyson; Latham, David W.; Prasad, Neelam J. S. S. V.; Nayak, Ashirbad; Lendl, Monika; Mordasini, Christoph (14 April 2023). "Discovery of a massive giant planet with extreme density around the sub-giant star TOI-4603". Astronomy & Astrophysics. 672: L7. arXiv:2303.11841. Bibcode:2023A&A...672L...7K. doi:10.1051/0004-6361/202245608. ISSN 0004-6361.
  14. ↑ "Planet TOI-4603 b". NASA Exoplanet Archive. Retrieved 17 November 2023.
  15. ↑ Johns, Daniel; Marti, Connor; Huff, Madison; McCann, Jacob; Wittenmyer, Robert A.; Horner, Jonathan; Wright, Duncan J. (16 November 2018). "Revised Exoplanet Radii and Habitability Using Gaia Data Release 2". The Astrophysical Journal Supplement Series. 239 (1): 14. arXiv:1808.04533. Bibcode:2018ApJS..239...14J. doi:10.3847/1538-4365/aae5fb. ISSN 1538-4365.
  16. ↑ Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.; Rowe, Jason F.; Jenkins, Jon M.; Bryson, Stephen T.; Latham, David W.; Howell, Steve B.; Gautier III, Thomas N.; Batalha, Natalie M.; Rogers, Leslie A. (13 January 2014). "Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets". The Astrophysical Journal Supplement Series. 210 (2): 20. arXiv:1401.4195. Bibcode:2014ApJS..210...20M. doi:10.1088/0067-0049/210/2/20. hdl:1721.1/92945. ISSN 0067-0049. S2CID 10760418.
  17. 1 2 3 4 Very Low-Density Planets around Kepler-51 Revealed with Transit Timing Variations and an Anomaly Similar to a Planet-Planet Eclipse Event: Kento Masuda
  18. 1 2 3 Charpinet, S.; et al. (21 December 2011). "A compact system of small planets around a former red-giant star". Nature. 480 (7378): 496–499. Bibcode:2011Natur.480..496C. doi:10.1038/nature10631. ISSN 1476-4687. PMID 22193103. S2CID 2213885.
  19. ↑ Zhou, Yifan; Sanghi, Aniket; Bowler, Brendan P.; Wu, Ya-Lin; Close, Laird M.; Long, Feng; Ward-Duong, Kimberly; Zhu, Zhaohuan; Kraus, Adam L.; Follette, Katherine B.; Bae, Jaehan (July 2022). "HST/WFC3 HΞ± Direct-imaging Detection of a Pointlike Source in the Disk Cavity of AB Aur". The Astrophysical Journal Letters. 934 (1): L13. arXiv:2207.06525. Bibcode:2022ApJ...934L..13Z. doi:10.3847/2041-8213/ac7fef. ISSN 2041-8205.
  20. ↑ Beaulieu, J. -P.; Bennett, D. P.; FouquΓ©, P.; Williams, A.; Dominik, M.; JΓΈrgensen, U. G.; Kubas, D.; Cassan, A.; Coutures, C.; Greenhill, J.; Hill, K.; Menzies, J.; Sackett, P. D.; Albrow, M.; Brillant, S. (1 January 2006). "Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing". Nature. 439 (7075): 437–440. arXiv:astro-ph/0601563. Bibcode:2006Natur.439..437B. doi:10.1038/nature04441. ISSN 0028-0836. PMID 16437108.
  21. ↑ Damasso, Mario; Del Sordo, Fabio; Anglada-EscudΓ©, Guillem; Giacobbe, Paolo; Sozzetti, Alessandro; Morbidelli, Alessandro; Pojmanski, Grzegorz; Barbato, Domenico; Butler, R. Paul; Jones, Hugh R. A.; Hambsch, Franz-Josef; Jenkins, James S.; LΓ³pez-GonzΓ‘lez, MarΓ­a JosΓ©; Morales, NicolΓ‘s; PeΓ±a Rojas, Pablo A. (1 January 2020). "A low-mass planet candidate orbiting Proxima Centauri at a distance of 1.5 AU". Science Advances. 6 (3): eaax7467. Bibcode:2020SciA....6.7467D. doi:10.1126/sciadv.aax7467. PMC 6962037. PMID 31998838.
  22. ↑ Hoyer, S.; Jenkins, J. S.; Parmentier, V.; Deleuil, M.; Scandariato, G.; Wilson, T. G.; DΓ­az, M. R.; Crossfield, I. J. M.; Dragomir, D.; Kataria, T.; Lendl, M.; Ramirez, R.; PeΓ±a Rojas, P. A.; VinΓ©s, J. I. (10 July 2023). "The extremely high albedo of LTT 9779 b revealed by CHEOPS". Astronomy & Astrophysics. 675: A81. doi:10.1051/0004-6361/202346117. Retrieved 12 July 2023.
  23. ↑ David M. Kipping; et al. (2011). "Detection of visible light from the darkest world" (PDF). Monthly Notices of the Royal Astronomical Society. 417 (1): L88–L92. arXiv:1108.2297. Bibcode:2011MNRAS.417L..88K. doi:10.1111/j.1745-3933.2011.01127.x. S2CID 119287494. Archived from the original (PDF) on 17 March 2012. Retrieved 12 August 2011.
  24. ↑ Flagg, Laura; Johns-Krull, Christopher M.; Nofi, Larissa; Llama, Joe; Prato, L.; Sullivan, Kendall; Jaffe, D. T.; Mace, Gregory (21 June 2019). "CO Detected in CI Tau b: Hot Start Implied by Planet Mass and M K". The Astrophysical Journal. 878 (2): L37. arXiv:1906.02860. Bibcode:2019ApJ...878L..37F. doi:10.3847/2041-8213/ab276d. ISSN 2041-8213. S2CID 174801528.
  25. ↑ Fang, Min; Kim, Jinyoung Serena; Pascucci, Ilaria; Apai, DΓ‘niel; Manara, Carlo Felice (12 December 2016). "A candidate planetary-mass object with a photoevaporating disk in Orion". The Astrophysical Journal. 833 (2): L16. arXiv:1611.09761. Bibcode:2016ApJ...833L..16F. doi:10.3847/2041-8213/833/2/L16. ISSN 2041-8213. S2CID 119511524.
  26. ↑ "The Extrasolar Planet Encyclopaedia β€” Proplyd 133-353". Extrasolar Planets Encyclopaedia. Retrieved 30 March 2019.
  27. 1 2 Zhang, Zhoujian; Liu, Michael C.; Claytor, Zachary R.; Best, William M. J.; Dupuy, Trent J.; Siverd, Robert J. (2021). "The Second Discovery from the COCONUTS Program: A Cold Wide-orbit Exoplanet around a Young Field M Dwarf at 10.9 pc". The Astrophysical Journal Letters. 916 (2): L11. arXiv:2107.02805. Bibcode:2021ApJ...916L..11Z. doi:10.3847/2041-8213/ac1123. S2CID 236464073.
  28. ↑ "The Extrasolar Planet Encyclopaedia β€” SWIFT J1756-2508". Extrasolar Planets Encyclopaedia. Retrieved 22 August 2018.
  29. ↑ "The Extrasolar Planet Encyclopaedia β€” K2-137 b.". Extrasolar Planets Encyclopaedia. 2018.
  30. ↑ "HD 20781 b". Open Exoplanet Catalogue. Retrieved 20 October 2018.
  31. ↑ "The Extrasolar Planet Encyclopaedia β€” HD 20782 b". Extrasolar Planets Encyclopaedia. Retrieved 4 May 2019.
  32. ↑ "The Extrasolar Planet Encyclopaedia β€” VB 10 b". Extrasolar Planets Encyclopaedia. Retrieved 12 February 2020.
  33. ↑ Feng, Fabo; Butler, R. Paul; Vogt, Steven S.; Clement, Matthew S.; Tinney, C. G.; Cui, Kaiming; Aizawa, Masataka; Jones, Hugh R. A.; Bailey, J.; Burt, Jennifer; Carter, B. D.; Crane, Jeffrey D.; Flammini Dotti, Francesco; Holden, Bradford; Ma, Bo (1 September 2022). "3D Selection of 167 Substellar Companions to Nearby Stars". The Astrophysical Journal Supplement Series. 262 (1): 21. arXiv:2208.12720. Bibcode:2022ApJS..262...21F. doi:10.3847/1538-4365/ac7e57. ISSN 0067-0049.
  34. 1 2 3 4 5 6 "Planetary Systems". exoplanetarchive.ipac.caltech.edu. Retrieved 15 January 2024.
  35. ↑ Dalal, S.; Kiefer, F.; HΓ©brard, G.; Sahlmann, J.; Sousa, S. G.; Forveille, T.; Delfosse, X.; Arnold, L.; Astudillo-Defru, N.; Bonfils, X.; Boisse, I.; Bouchy, F.; Bourrier, V.; Brugger, B.; CortΓ©s-Zuleta, P. (1 July 2021). "The SOPHIE search for northern extrasolar planets. XVII. A wealth of new objects: Six cool Jupiters, three brown dwarfs, and 16 low-mass binary stars". Astronomy and Astrophysics. 651: A11. arXiv:2105.09741. Bibcode:2021A&A...651A..11D. doi:10.1051/0004-6361/202140712. ISSN 0004-6361.
  36. ↑ De Rosa, Robert J.; Kalas, Paul (February 2019). "A Near-coplanar Stellar Flyby of the Planet Host Star HD 106906". The Astronomical Journal. 157 (3). 125. arXiv:1902.10220. Bibcode:2019AJ....157..125D. doi:10.3847/1538-3881/ab0109. S2CID 119191779.
  37. ↑ "PSR J1719-1438 | NASA Exoplanet Archive". exoplanetarchive.ipac.caltech.edu. Retrieved 15 January 2024.
  38. ↑ Orosz, J.; Welsh, W.; Carter, J.; Fabrycky, D.; Cochran, W.; et al. (2012). "Kepler-47: A Transiting Circumbinary Multi-Planet System". Science. 337 (6101): 1511–4. arXiv:1208.5489. Bibcode:2012Sci...337.1511O. doi:10.1126/science.1228380. PMID 22933522. S2CID 44970411.
  39. ↑ Laurance R. Doyle; Joshua A. Carter; Daniel C. Fabrycky; Robert W. Slawson; Steve B. Howell; Joshua N. Winn; Jerome A. Orosz; Andrej Prsa; William F. Welsh; et al. (2011). "Kepler-16: A Transiting Circumbinary Planet". Science. 333 (6049): 1602–1606. arXiv:1109.3432. Bibcode:2011Sci...333.1602D. doi:10.1126/science.1210923. PMID 21921192. S2CID 206536332.
  40. 1 2 3 4 Kuzuhara, M.; Tamura, M.; Ishii, M.; Kudo, T.; Nishiyama, S.; Kandori, R. (1 April 2011). "The Widest-Separation Substellar Companion Candidate to a Binary T Tauri Star". The Astronomical Journal. 141 (4): 119. Bibcode:2011AJ....141..119K. doi:10.1088/0004-6256/141/4/119. ISSN 0004-6256.
  41. ↑ Currie, Thayne; Daemgen, Sebastian; Debes, John; Lafreniere, David; Itoh, Yoichi; Jayawardhana, Ray; Ratzka, Thorsten; Correia, Serge (2014). "Direct Imaging and Spectroscopy of a Candidate Companion Below/Near the Deuterium-Burning Limit In The Young Binary Star System, ROXs 42B". The Astrophysical Journal Letters. 780 (2): 30. arXiv:1310.4825. Bibcode:2014ApJ...780L..30C. doi:10.1088/2041-8205/780/2/L30. S2CID 118464822.
  42. ↑ Gaarn, Josefine; Burningham, Ben; Faherty, Jacqueline K; Visscher, Channon; Marley, Mark S; Gonzales, Eileen C; Calamari, Emily; Bardalez Gagliuffi, Daniella; Lupu, Roxana; Freedman, Richard (31 March 2023). "The puzzle of the formation of T8 dwarf Ross 458c". Monthly Notices of the Royal Astronomical Society. 521 (4): 5761–5775. arXiv:2303.16863. Bibcode:2023MNRAS.521.5761G. doi:10.1093/mnras/stad753. ISSN 0035-8711.
  43. ↑ Kraus, Adam; J. Ireland, Michael; A. Cieza, Lucas; Hinkley, Sasha; J. Dupuy, Trent; P. Bowler, Brendan; C. Liu, Michael (2 January 2014). "Three Wide Planetary-Mass Companions to FW Tau, ROXs 12, and ROXs 42B". The Astrophysical Journal. 781 (1): 1311. arXiv:1311.7664. Bibcode:2014ApJ...781...20K. doi:10.1088/0004-637X/781/1/20. S2CID 41086512.
  44. ↑ Mora, Ariel; Wu, Ya-Lin; Bowler, Brendan P.; Sheehan, Patrick (1 January 2020). "Measuring the Mass of the Faint Companion to FW Tau with ALMA". Research Notes of the AAS. 4 (1): 9. Bibcode:2020RNAAS...4....9M. doi:10.3847/2515-5172/ab6852. ISSN 2515-5172.
  45. 1 2 Gould, A.; et al. (3 July 2014). "A terrestrial planet in a ~1-AU orbit around one member of a 15-AU binary". Science. 345 (6192): 46–49. arXiv:1407.1115. Bibcode:2014Sci...345...46G. doi:10.1126/science.1251527. ISSN 0036-8075. PMID 24994642. S2CID 206555598. these projected separations are good proxies for the semi-major axis (afterupward adjustment by to correct for projection effects)
  46. ↑ Horner, J.; Wittenmyer, R. A.; Hinse, T. C.; Marshall, J. P. (2014). "A dynamical investigation of the proposed BD +20 2457 system". Monthly Notices of the Royal Astronomical Society. 439 (1): 1176. arXiv:1401.2793. Bibcode:2014MNRAS.439.1176H. doi:10.1093/mnras/stu081.
  47. ↑ Bortle, Anna; et al. (2021). "A Gaussian Process Regression Reveals No Evidence for Planets Orbiting Kapteyn's Star". The Astronomical Journal. 161 (5): 230. arXiv:2103.02709. Bibcode:2021AJ....161..230B. doi:10.3847/1538-3881/abec89. S2CID 232110395.
  48. ↑ Jones, M. I.; Jenkins, J. S. (2014). "No evidence of the planet orbiting the extremely metal-poor extragalactic star HIP 13044". Astronomy and Astrophysics. 562: A129. arXiv:1401.0517. Bibcode:2014A&A...562A.129J. doi:10.1051/0004-6361/201322132. S2CID 55365608.
  49. ↑ "Notes for mu2 scorpii". Extrasolar Planets Encyclopaedia. Retrieved 6 May 2022.
  50. ↑ "Notes for planet M51-ULS-1b". Extrasolar Planets Encyclopaedia. Retrieved 18 July 2021.
  51. 1 2 "V921 Sco b". Extrasolar Planets Encyclopaedia. Retrieved 18 July 2021.
  52. ↑ "Notes for planet 2MASSS J1119-1137 B". Extrasolar Planets Encyclopaedia. Retrieved 29 August 2017.
  53. ↑ Lee, Byeong-Cheol; Do, Hee-Jin; Park, Myeong-Gu; Lim, Beomdu; Choi, Yeon-Ho; Koo, Jae-Rim; Bang, Tae-Yang; Oh, Hyeong-Ill; Han, Inwoo; Chang, Heon-Young (1 October 2023). "Long-period radial velocity variations of nine M red giants - The detection of substellar companions around HD 6860 and HD 112300". Astronomy & Astrophysics. 678: A106. Bibcode:2023A&A...678A.106L. doi:10.1051/0004-6361/202243725. ISSN 0004-6361.
  54. ↑ De Beck, E.; Decin, L.; De Koter, A.; Justtanont, K.; Verhoelst, T.; Kemper, F.; Menten, K. M. (2010). "Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: Derivation of mass-loss rate formulae". Astronomy and Astrophysics. 523: A18. arXiv:1008.1083. Bibcode:2010A&A...523A..18D. doi:10.1051/0004-6361/200913771. S2CID 16131273.
  55. ↑ Fedele; et al. (2005). "The K -Band Intensity Profile of R Leonis Probed by VLTI/VINCI". Astronomy & Astrophysics. 431 (3): 1019–1026. arXiv:astro-ph/0411133. Bibcode:2005A&A...431.1019F. doi:10.1051/0004-6361:20042013. S2CID 15500217.
  56. ↑ Linsky, Jeffrey L.; Wood, Brian E.; Brown, Alexander; Giampapa, Mark S.; Ambruster, Carol (December 1995). "Stellar Activity at the End of the Main Sequence: GHRS Observations of the M8 Ve Star VB 10". The Astrophysical Journal. 455: 670. Bibcode:1995ApJ...455..670L. doi:10.1086/176614. hdl:2060/19970022983. ISSN 0004-637X.
  57. ↑ "The Extrasolar Planet Encyclopaedia β€” 2M 0746+20 b". Extrasolar Planets Encyclopaedia. Archived from the original on 4 September 2019. Retrieved 8 March 2014.
  58. ↑ Suleymanova, S. A.; Rodin, A. E. (1 November 2014). "Detection of regular variations in the intensity and pulse time of arrival of the anomalous pulsar PSR B0943+10". Astronomy Reports. 58 (11): 796–807. Bibcode:2014ARep...58..796S. doi:10.1134/S1063772914110067. ISSN 1562-6881. S2CID 255196382.
  59. ↑ "The Extrasolar Planet Encyclopaedia β€” PSR B0943+10 c". Extrasolar Planets Encyclopaedia. Retrieved 18 January 2023.
  60. ↑ "The Extrasolar Planet Encyclopaedia β€” PSR B0943+10 b". Extrasolar Planets Encyclopaedia. Retrieved 18 January 2023.
  61. ↑ Yue, Y. L.; Cui, X. H.; Xu, R. X. (1 October 2006). "Is PSR B0943+10 a low-mass quark star?". The Astrophysical Journal. 649 (2): L95–L98. arXiv:astro-ph/0603468. Bibcode:2006ApJ...649L..95Y. doi:10.1086/508421. ISSN 0004-637X. S2CID 18183996.
  62. ↑ Lee, Byeong-Cheol; Do, Hee-Jin; Park, Myeong-Gu; Lim, Beomdu; Choi, Yeon-Ho; Koo, Jae-Rim; Bang, Tae-Yang; Oh, Hyeong-Ill; Han, Inwoo; Chang, Heon-Young (1 October 2023). "Long-period radial velocity variations of nine M red giants. The detection of substellar companions around HD 6860 and HD 112300". Astronomy and Astrophysics. 678: A106. arXiv:2307.15897. Bibcode:2023A&A...678A.106L. doi:10.1051/0004-6361/202243725. ISSN 0004-6361.
  63. ↑ Lee, B. -C.; Han, I.; Park, M. -G.; Mkrtichian, D. E.; Hatzes, A. P.; Kim, K. -M. (1 June 2014). "Planetary companions in K giants Ξ² Cancri, ΞΌ Leonis, and Ξ² Ursae Minoris". Astronomy and Astrophysics. 566: A67. arXiv:1405.2127. Bibcode:2014A&A...566A..67L. doi:10.1051/0004-6361/201322608. ISSN 0004-6361.
  64. ↑ Agol, Eric; Dorn, Caroline; Grimm, Simon L.; Turbet, Martin; Ducrot, Elsa; Delrez, Laetitia; Gillon, MichaΓ«l; Demory, Brice-Olivier; Burdanov, Artem; Barkaoui, Khalid; Benkhaldoun, Zouhair; Bolmont, Emeline; Burgasser, Adam; Carey, Sean; de Wit, Julien (1 February 2021). "Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides". The Planetary Science Journal. 2 (1): 1. arXiv:2010.01074. Bibcode:2021PSJ.....2....1A. doi:10.3847/PSJ/abd022. ISSN 2632-3338.
  65. ↑ Stassun, Keivan G.; Oelkers, Ryan J.; Paegert, Martin; Torres, Guillermo; Pepper, Joshua; De Lee, Nathan; Collins, Kevin; Latham, David W.; Muirhead, Philip S.; Chittidi, Jay; Rojas-Ayala, BΓ‘rbara; Fleming, Scott W.; Rose, Mark E.; Tenenbaum, Peter; Ting, Eric B. (1 October 2019). "The Revised TESS Input Catalog and Candidate Target List". The Astronomical Journal. 158 (4): 138. arXiv:1905.10694. Bibcode:2019AJ....158..138S. doi:10.3847/1538-3881/ab3467. ISSN 0004-6256.
  66. ↑ Pulley, D.; Sharp, I. D.; Mallett, J.; von Harrach, S. (August 2022). "Eclipse timing variations in post-common envelope binaries: Are they a reliable indicator of circumbinary companions?". Monthly Notices of the Royal Astronomical Society. 514 (4): 5725–5738. arXiv:2206.06919. Bibcode:2022MNRAS.514.5725P. doi:10.1093/mnras/stac1676.
  67. ↑ Janson, Markus; Gratton, Raffaele; Rodet, Laetitia; Vigan, Arthur; Bonnefoy, MickaΓ«l; Delorme, Philippe; Mamajek, Eric E.; Reffert, Sabine; Stock, Lukas; Marleau, Gabriel-Dominique; Langlois, Maud; Chauvin, GaΓ«l; Desidera, Silvano; Ringqvist, Simon; Mayer, Lucio; Viswanath, Gayathri; Squicciarini, Vito; Meyer, Michael R.; Samland, Matthias; Petrus, Simon; Helled, Ravit; Kenworthy, Matthew A.; Quanz, Sascha P.; Biller, Beth; Henning, Thomas; Mesa, Dino; Engler, Natalia; Carson, Joseph C. (2021). "A wide-orbit giant planet in the high-mass b Centauri binary system". Nature. 600 (7888): 231–234. arXiv:2112.04833. Bibcode:2021Natur.600..231J. doi:10.1038/s41586-021-04124-8. PMID 34880428. S2CID 245005994.
  68. ↑ Dietrich, Jeremy; Apai, DΓ‘niel (27 October 2020). "An Integrated Analysis with Predictions on the Architecture of the tau Ceti Planetary System, Including a Habitable Zone Planet". The Astronomical Journal. 161: 17. arXiv:2010.14675. doi:10.3847/1538-3881/abc560. S2CID 225094415.
  69. ↑ Feng, F.; Tuomi, M.; Jones, H. R. A.; Barnes, J.; Anglada-EscudΓ©, G.; Vogt, S. S.; Butler, R. P. (5 September 2017). "Color Difference Makes a Difference: Four Planet Candidates around Ο„ Ceti". The Astronomical Journal. 154 (4): 135. arXiv:1708.02051. Bibcode:2017AJ....154..135F. doi:10.3847/1538-3881/aa83b4. ISSN 0004-6256.
  70. ↑ Tuomi, Mikko (6 April 2012). "Evidence for 9 planets in the 10180 system". Astronomy & Astrophysics. 543: A52. arXiv:1204.1254. Bibcode:2012A&A...543A..52T. doi:10.1051/0004-6361/201118518. S2CID 15876919.
  71. ↑ "NASA telescope reveals largest batch of Earth-size, habitable-zone planets around single star". Exoplanet Exploration: Planets Beyond our Solar System. nasa.gov. 21 February 2017. Retrieved 14 December 2017.
  1. ↑ Based on the estimated temperature and luminosity.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.