This is a list of exoplanet discoveries that were the first by several criteria, including:

and others.

The first

The choice of "first" depends on definition and confirmation, as below. The three systems detected prior to 1994 each have a drawback, with Gamma Cephei b being unconfirmed until 2002; while the PSR B1257+12 planets orbit a pulsar. This leaves 51 Pegasi b (discovered and confirmed 1995) as the first confirmed exoplanet around a normal star.

First Planet Star Year Notes
First detected exoplanet later confirmed Gamma Cephei Ab Gamma Cephei 1988 (suspected), 2002 (confirmed) First evidence for exoplanet to receive later confirmation.
First exoplanets to be confirmed PSR B1257+12 B
PSR B1257+12 C
PSR B1257+12 1992 First super-Earths.[1]

These exoplanets orbit a pulsar.

First confirmed exoplanet around normal star 51 Pegasi b 51 Pegasi 1995 First convincing exoplanet discovered around a Sun-like star.[2] While the minimum mass of HD 114762 b was high enough (11 Jupiter-masses) that it could be a brown dwarf, 51 Peg b's minimum mass meant that it almost certainly was near the mass of Jupiter.

By discovery method

First discovery by a method
Discovery method Planet Star Year Notes
First planet discovered via pulsar timing PSR B1257+12 B
PSR B1257+12 C
PSR B1257+12 1992 First super-earths.[1]
First planet discovered via radial velocity 51 Pegasi b 51 Pegasi 1995 First convincing exoplanet discovered around a Sun-like star.[2] While the minimum mass of HD 114762 b was high enough (11 Jupiter-masses) that it could be a brown dwarf, 51 Peg b's minimum mass meant that it almost certainly was near the mass of Jupiter.
First planet discovered via transit OGLE-TR-56 b OGLE-TR-56 2002 [3] This was also the second planet detected through transiting,[3] and the then farthest planet known at time of discovery.[3] The first extrasolar planet discovered to be transiting was HD 209458 b, which had already been discovered by the radial velocity method.[3][4]
First planet discovered via gravitational lensing OGLE-2003-BLG-235L b OGLE-2003-BLG-235L / MOA-2003-BLG-53L 2004 This was discovered independently by the OGLE and MOA teams.[5]
First exoplanet discovered by directly imaging the extrasolar planet 2M1207 b 2M1207 2004/

2005

May be a brown dwarf instead of a planet, depending on formation mechanism and definitions chosen.[6]
First planet discovered through variable star timing V391 Pegasi b V391 Pegasi 2007 The planet was discovered by examining deviations from pulsation frequency from a subdwarf star.[7]
First extrasolar planet discovered by indirect imaging (visible light) Fomalhaut b Fomalhaut 2008 Discovered by a light reflecting off of a dust cloud surrounding the planet.[8] First planet orbiting an ABO star. In 2020 this object was determined to be an expanding debris cloud from a collision of asteroids rather than a planet.[9]
First extrasolar planet discovered by astrometric observations HD 176051 b HD 176051 A or HD 176051 B 2010 Orbits around one of the stars in a binary star system although it is not known which component it is orbiting around.
First exoplanet discovered by orbital perturbations of another planet Kepler-19c Kepler-19 (KOI-84, TYC 3134-1549-1) 2011 Detected through transit-timing variation method. Its existence was inferred by the gravitational influence it had on the orbital periodicity of Kepler-19b.[10][11]
First exoplanets discovered by orbital phase reflected light variations Kepler-70b, Kepler-70c[12] Kepler-70 2011 Now dubious.[13][14]
First exoplanet discovered by transit-duration variation method Kepler-88c Kepler-88 (KOI-142) 2013 Both transit timing variation and transit-duration variation was measured to measure deviations from the regular orbit of Kepler-88b. Deviations of the planet's transit duration and timing helped to discover Kepler-88c.[15]

By detection method

Some of these planets had already been discovered by another method but were the first to be detected by the listed method.

First detection by a method
Detection method Planet Star Year Notes
First planet detected via pulsar timing PSR B1257+12 B
PSR B1257+12 C
PSR B1257+12 1992 [1]
First planet detected via radial velocity 51 Pegasi b 51 Pegasi 1995 [2]
First planet detected by transit method HD 209458 b HD 209458 1999 This first exoplanet found to be transiting had already been discovered by the radial velocity method. This is also the first planet that has been detected through more than one method.[3][4]
First directly imaged extrasolar planet (infrared) 2M1207 b 2M1207 2004 May be a sub-brown dwarf instead of a planet, depending on formation mechanism and definitions chosen. If it is a planet, it is the first known planet around a brown dwarf.
First planet with observed secondary eclipse (infrared) HD 209458 b HD 209458 2005 Planet was discovered in 1999. This is the first detection of light from an object with a clear planetary origin.
First directly imaged extrasolar planet orbiting a 'normal' star (infrared) DH Tauri b DH Tauri 2005 [16] Revised masses place it below the deuterium-burning limit. May be a brown dwarf companion.
First extrasolar planet detected through polarimetry HD 189733 b HD 189733 2008 Could not be confirmed. Possibly a "Saharan dust event over the La Palma observatory in 2008 August".[17] HD 189733 b was discovered in 2005.
First directly imaged extrasolar planet orbiting a sun-like star (infrared) 1RXS J160929.1210524 b 1RXS J160929.1210524 2008 [18] Revised mass places it at or above the deuterium-burning limit. May be a sub-brown dwarf instead of a planet, depending on formation mechanism and definitions chosen.
First planets directly characterized through astrometric observations Gliese 876 b and Gliese 876 c Gliese 876 2009
First planet detected by orbital phase reflected light variations in visible light CoRoT-1b[19] CoRoT-1 2009 The planet in question had already been discovered with transit method.
First planets detected through ellipsoidal light variations of the host star HAT-P-7b HAT-P-7 2010 [20]
First planets detected through transit timing variation method Kepler-9b, Kepler-9c Kepler-9 2010 Transit-timing variation was used to confirm both planets detected through transit method.[21]
First planet detected through transit duration variation method Kepler-16b[22] Kepler-16 2011 Orbital motion of the three-body system Kepler-16 causes variations of the duration of stellar eclipses and planetary transits.
First planet detected with eclipsing binary timing with well-characterized orbit Kepler-16b Kepler-16 2011 Kepler-16b itself was detected through transit method. There are stars with earlier detections through eclipsing binary timing. However, either those signals have matched with unstable orbits or the exact orbits are not known.[23]
First planet detected by light variations due to relativistic beaming TrES-2b TrES-2A 2012 [24]
First tilted multi-planetary system discovered Kepler-56b, c and d Kepler-56 2013 [25]

By system type

First discovery by system type
System type Planet Star Year Notes
First extrasolar planet discovered in a solitary star system PSR B1257+12 B
PSR B1257+12 C
PSR B1257+12 1992 First extrasolar planets discovered.[26]
First "free-floating" planet discovered[NB 1] S Ori J053810.1-023626
(S Ori 70)
2004 [27] Has a mass of 3 MJupiter; needs confirmation.
First planet discovered in a multiple main-sequence star system 55 Cancri b 55 Cancri 1996 55 Cnc has a distant red dwarf companion.
  • The planet around Gamma Cephei was already suspected in 1988, although its existence was not confirmed until 2002
  • Gamma Cephei Ab is the first relatively close binary with a planet.
First planet discovered in a circumbinary orbit PSR B1620-26 b PSR B1620-26 1993 Orbits a pulsar and a white dwarf. Discovery confirmed in 2003.
First multiple planet extrasolar system discovered PSR B1257+12 A
PSR B1257+12 B
PSR B1257+12 C
PSR B1257+12 1992 First pulsar planetary system.
First multiple planet system in a multi-star system where multiple planets orbit multiple stars Kepler-47b
Kepler-47c
Kepler-47 2012 [28][29] NN Serpentis cataclysmic variable is suspected to have at least 2 planets as of 2009.[30]
First planet discovered in globular cluster PSR B1620-26 b PSR B1620-26 1993 Located in Messier 4.
First binary star system where both components have separate planetary systems HD 20781 b
HD 20781 c
HD 20782 b
HD 20781
HD 20782
2011

By star type

First discovery by star type
Star type Planet Star Year Notes
First pulsar planet discovered PSR B1257+12 B
PSR B1257+12 C
PSR B1257+12 1992 [26][1]
First known extrasolar planet orbiting a main sequence star (Sun-like) 51 Pegasi b 51 Pegasi 1995 First hot Jupiter.[26]
First known planet orbiting an ABO star (blue-white star) Fomalhaut b Fomalhaut 2008 First extrasolar planet discovered by visible light image. In 2020 this object was determined to be an expanding debris cloud from a collision of asteroids rather than a planet.[9]
First known planet orbiting a red dwarf Gliese 876 b Gliese 876 1998 [31][32]
First known planet orbiting a giant star Iota Draconis b Iota Draconis 2002 Aldebaran b was announced in 1997, but was not confirmed until 2015.
First known planet orbiting a white dwarf. PSR B1620-26 b PSR B1620-26 1993 GD 66 b was announced in 2007, but has not been confirmed.
First confirmed planet orbiting a white dwarf. WD 1856+534 b WD 1856+534 2020
First known planet orbiting a brown dwarf. 2M1207 b 2M1207 2004 May in fact be a sub-brown dwarf instead of a planet, depending on formation mechanism and definitions chosen. First directly imaged planet.
First "free-floating" planet discovered[NB 1] S Ori J053810.1-023626
(S Ori 70)
2004 [27] Has mass of 3 MJupiter; needs confirmation.

By planet type

Firsts by planet type
Planet type Planet Star Year Notes
First hot Jupiter 51 Pegasi b 51 Pegasi 1995 First planet discovered orbiting a main sequence star.
First extrasolar terrestrial planet orbiting a main sequence star 55 Cancri e 55 Cancri 2004 Mu Arae c (discovered in 2004) has been proposed to be a terrestrial planet, but its terrestrial nature is not confirmed, as no radius measurements are available so the density is unknown. The minimum mass is comparable to that of Uranus, which is not a terrestrial planet. The first extrasolar planet found to have a density compatible with being a rocky planet is CoRoT-7b in 2009. 55 Cancri e was found to be a terrestrial planet in 2011.
First super-Earth discovered[NB 2] PSR B1257+12 B
PSR B1257+12 C
PSR B1257+12 1992 First planets discovered.[26]
First super-Earth orbiting a main sequence star[NB 2] Gliese 876 d Gliese 876 2005 Orbits a red dwarf star.
First icy extrasolar planet orbiting a main sequence star OGLE-2005-BLG-390Lb OGLE-2005-BLG-390L 2006 Orbits a red dwarf star. The icy nature of this planet is not confirmed, as no radius measurements are available so the density is unknown. The first extrasolar planet known to have a density compatible with being an icy planet is GJ 1214 b, though even for this case there are other possibilities for the composition.
First evaporating planet discovered HD 209458 b HD 209458 1999 First transiting planet.[26]
First Jupiter analogue HIP 11915 b HIP 11915 2015 The discovery raises the possibility that HIP 11915 will be the first Solar System analogue discovered.
First ocean planet candidate; also first small planet within the circumstellar habitable zone Gliese 581d Gliese 581 2007 Orbits a red dwarf star. This planet orbits a little too far from the star, but the greenhouse effect would be enough to make this planet habitable. The other ocean planet candidate, GJ 1214 b, was detected by transit in which the density was calculated and determined that this planet is an ocean planet. Now disputed.[33][34]
First "free-floating" planet discovered[NB 1] S Ori J053810.1-023626
(S Ori 70)
2004 [27] Has mass of 3 MJupiter; needs confirmation.

Other

Other firsts
Record Planet Star Year Notes
First extrasolar transiting planet HD 209458 b HD 209458 1999 [4] OGLE-TR-56 b is the first planet found by transit method.[3]
First map of an extrasolar planet released HD 189733 b HD 189733 2007 The map in question is a thermal emission map.[35]
First multi-planet extrasolar system directly imaged HR 8799 b
HR 8799 c
HR 8799 d
HR 8799 e
HR 8799 2008
First planet discovered with a retrograde orbit WASP-17b WASP-17 2009 The planet HAT-P-7b was discovered before WASP-17b, but its retrograde nature was announced after that of WASP-17b.
First extrasolar planet with serious potential to support life Kepler-62f Kepler-62 2013 Kepler-62f was the first definite near-Earth-sized planet discovered within its star's habitable zone.[36][37] The dubious planet candidate Gliese 581g was discovered in 2010. This planet may be tidally locked to its parent star, but there could be a habitable band along the terminator.
First planet discovered orbiting a Sun-like star in a star cluster Pr0201b
Pr0211b
Pr0201
Pr0211
2012 Beehive Cluster star cluster.[38]
First recorded planet-planet transit Kepler-89d
Kepler-89e
Kepler-89 2012 Kepler-89e was partially transiting Kepler-89d.[39]
First transiting planet discovered in a star cluster Kepler-66b
Kepler-67b
Kepler-66
Kepler-67
2013 NGC 6811 star cluster; these two planets were, at the time of discovery, only two of six total planets known in star clusters.[40]
First map of cloud coverage of an extrasolar planet Kepler-7b Kepler-7 2013 Observations indicate cloud coverage in the west and clear skies in the east.[41]
First not tidally locked extrasolar planet to have its day length measured Beta Pictoris b Beta Pictoris 2014 Rotation speed was calculated to be 8.1 hours.[42]
First extrasolar planet system with one transiting and one directly imaged planet
First planet found to contain water in the stratosphere WASP-121b WASP-121 2017 [43][44]
First Earth-mass rogue planet unbounded by any star, and free floating in the Milky Way galaxy. OGLE-2016-BLG-1928 2020 Detected by microlensing techniques.[45][46]

See also

Notes

  1. 1 2 3 Free-floating objects are not usually considered planets
  2. 1 2 The mass range of Super-Earths is disputed

References

  1. 1 2 3 4 Space.com, "Earth-Sized Planets Confirmed, But They're Dead Worlds", Robert Roy Britt, 29 May 2003 (accessed 20-10-2010)
  2. 1 2 3 Queloz, Didier (2006). "Extrasolar planets: Light through a gravitational lens". Nature. 439 (7075): 400–401. Bibcode:2006Natur.439..400Q. doi:10.1038/439400a. PMID 16437096. S2CID 4372378.
  3. 1 2 3 4 5 6 SpaceDaily.com, "Farthest Known Planet Opens the Door For Finding New Earths", 10 January 2003 (accessed 2010-10-24)
  4. 1 2 3 PhysOrg.com, "New Era in Planetary Science", 23 March 2005 (accessed 2010-10-24)
  5. Sky and Telescope, "First Planet Found by Microlensing", Alan M. MacRobert, 16 April 2004 (accessed 2010-10-24)
  6. ESO press releases
  7. Silvotti, R.; Schuh, S.; Janulis, R.; Solheim, J.-E.; Bernabei, S.; Østensen, R.; Oswalt, T. D.; Bruni, I.; Gualandi, R.; Bonanno, A.; Vauclair, G.; Reed, M.; Chen, C.-W.; Leibowitz, E.; Paparo, M.; Baran, A.; Charpinet, S.; Dolez, N.; Kawaler, S.; Kurtz, D.; Moskalik, P.; Riddle, R.; Zola, S. (2007). "A giant planet orbiting the 'extreme horizontal branch' star V 391 Pegasi" (PDF). Nature. 449 (7159): 189–191. Bibcode:2007Natur.449..189S. doi:10.1038/nature06143. PMID 17851517. S2CID 4342338.
  8. Kalas, Paul; et al. (2008-11-13). "Optical Images of an Exosolar Planet 25 Light-Years from Earth". Science. 322 (5906): 1345–8. arXiv:0811.1994. Bibcode:2008Sci...322.1345K. doi:10.1126/science.1166609. PMID 19008414. S2CID 10054103.
  9. 1 2 Gáspár, András; Rieke, George H. (April 20, 2020). "New HST data and modeling reveal a massive planetesimal collision around Fomalhaut". PNAS. 117 (18): 9712–9722. arXiv:2004.08736. Bibcode:2020PNAS..117.9712G. doi:10.1073/pnas.1912506117. PMC 7211925. PMID 32312810. S2CID 215827666.
  10. TG Daily, "'Invisible' planet detected", Kate Taylor, 9 September 2011
  11. Time, "Found: A (So Far) Invisible World", Michael D. Lemonick, 9 September 2011
  12. Charpinet, S. and Fontaine, G. and Brassard, P. and Green, EM and Van Grootel, V. and Randall, SK and Silvotti, R. and Baran, AS and Østensen, RH and Kawaler, SD; et al. (2011). "A compact system of small planets around a former red-giant star". Nature. Nature Publishing Group. 480 (7378): 496–499. Bibcode:2011Natur.480..496C. doi:10.1038/nature10631. PMID 22193103. S2CID 2213885.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. Krzesinski, J. (August 25, 2015), "Planetary candidates around the pulsating sdB star KIC 5807616 considered doubtful", Astronomy & Astrophysics, 581: A7, Bibcode:2015A&A...581A...7K, doi:10.1051/0004-6361/201526346
  14. Blokesz, A.; Krzesinski, J.; Kedziora-Chudczer, L. (4 July 2019), "Analysis of putative exoplanetary signatures found in light curves of two sdBV stars observed by Kepler", Astronomy & Astrophysics, 627: A86, arXiv:1906.03321, Bibcode:2019A&A...627A..86B, doi:10.1051/0004-6361/201835003, S2CID 182952925
  15. Nesvorný, David; Kipping, David; Terrell, Dirk; Hartman, Joel; Bakos, Gáspár Á.; Buchhave, Lars A.; Stapelfeldt, Karl; Marois, Christian; Krist, John (2013). "Koi-142, the King of Transit Variations, is a Pair of Planets Near the 2:1 Resonance". The Astrophysical Journal. 777 (1): 3. arXiv:1304.4283. Bibcode:2013ApJ...777....3N. doi:10.1088/0004-637X/777/1/3. S2CID 59933168.
  16. Mass was revised to about 11.5 Jupiter masses in 2006. The object was discovered in 2005.
  17. The polarization of HD 189733'
  18. Exoplanet 'circles normal star', BBC News Online, September 15, 2008
  19. Ignas A. G. Snellen; Ernst J. W. de Mooij; Simon Albrecht (2009-05-28). "The changing phases of extrasolar planet CoRoT-1b". Nature. 459 (7246): 543–545. arXiv:0904.1208. Bibcode:2009Natur.459..543S. doi:10.1038/nature08045. PMID 19478779. S2CID 4347612.
  20. Discovery of Ellipsoidal Variations in the Kepler Light Curve of HAT-P-7: William F. Welsh, Jerome A. Orosz, Sara Seager, Jonathan J. Fortney, Jon Jenkins, Jason F. Rowe, David Koch, William J. Borucki
  21. "NASA's Kepler Mission Discovers Two Planets Transiting the Same Star". 20 November 2015.
  22. Doyle, Laurance R.; Carter, Joshua A.; Fabrycky, Daniel C.; Slawson, Robert W.; Howell, Steve B.; Winn, Joshua N.; Orosz, Jerome A.; Prˇsa, Andrej; Welsh, William F.; Quinn, Samuel N.; Latham, David; Torres, Guillermo; Buchhave, Lars A.; Marcy, Geoffrey W.; Fortney, Jonathan J. (2011-09-16). "Kepler-16: A Transiting Circumbinary Planet". Science. 333 (6049): 1602–1606. arXiv:1109.3432. Bibcode:2011Sci...333.1602D. doi:10.1126/science.1210923. ISSN 0036-8075. PMID 21921192. S2CID 206536332.
  23. Overbye, Dennis (2011-09-15). "NASA Detects Planet Dancing With a Pair of Stars". The New York Times. Retrieved 16 September 2011.
  24. Photometrically derived masses and radii of the planet and star in the TrES-2 system: Thomas Barclay, Daniel Huber, Jason F. Rowe, Jonathan J. Fortney, Caroline V. Morley, Elisa V. Quintana, Daniel C. Fabrycky, Geert Barentsen, Steven Bloemen, Jessie L. Christiansen, Brice-Olivier Demory, Benjamin J. Fulton, Jon M. Jenkins, Fergal Mullally, Darin Ragozzine, Shaun E. Seader, Avi Shporer, Peter Tenenbaum, Susan E. Thompson
  25. Huber, Daniel; Carter, Joshua A.; Barbieri, Mauro; Miglio, Andrea; Deck, Katherine M.; Fabrycky, Daniel C.; Montet, Benjamin T.; Buchhave, Lars A.; Chaplin, William J.; Hekker, Saskia; Montalbán, Josefina; Sanchis-Ojeda, Roberto; Basu, Sarbani; Bedding, Timothy R.; Campante, Tiago L. (2013-10-18). "Stellar Spin-Orbit Misalignment in a Multiplanet System". Science. 342 (6156): 331–334. arXiv:1310.4503. Bibcode:2013Sci...342..331H. doi:10.1126/science.1242066. ISSN 0036-8075. PMID 24136961. S2CID 1056370.
  26. 1 2 3 4 5 Space.com, "Out There: A Strange Zoo of Other Worlds", Charles Q. Choi, 14 February 2010 (accessed 2010-10-20)
  27. 1 2 3 Space.com, "Mysterious Object Might be First Extrasolar Planet Photographed" Archived 2002-06-04 at the Wayback Machine, Robert Roy Britt, 22 May 2002 (accessed 2010-10-24)
  28. Space.com, "Newfound 'Tatooine' Alien Planet Bodes Well for E.T. Search", Charles Q. Choi, 4 September 2012 (accessed 5 September 2012)
  29. SpaceDaily, "Astronomers Find First Multi-Planet System Around a Binary Star", 3 September 2012 (accessed 5 September 2012)
  30. Beuermann, K.; Hessman, F. V.; Dreizler, S.; Marsh, T. R.; Parsons, S. G.; Winget, D. E.; Miller, G. F.; Schreiber, M. R.; Kley, W.; Dhillon, V. S.; Littlefair, S. P.; Copperwheat, C. M.; Hermes, J. J. (2010). "Two planets orbiting the recently formed post-common envelope binary NN Serpentis". Astronomy and Astrophysics. 521: L60. arXiv:1010.3608. Bibcode:2010A&A...521L..60B. doi:10.1051/0004-6361/201015472. S2CID 53702506.
  31. Marietta DiChristina (September 1998). "Other Worlds". Popular Science. pp. 77–79.
  32. Delfosse, Xavier; Forveille, Thierry; Mayor, Michel; Perrier, Christian; Naef, Dominique; Queloz, Didier (1998). "The closest extrasolar planet. A giant planet around the M4 dwarf GL 876". Astronomy and Astrophysics. 338: L67–L70. arXiv:astro-ph/9808026. Bibcode:1998A&A...338L..67D.
  33. Robertson, Paul; Mahadevan, Suvrath; Endl, Michael; Roy, Arpita (3 July 2014). "Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581". Science. 345 (6195): 440–444. arXiv:1407.1049. Bibcode:2014Sci...345..440R. CiteSeerX 10.1.1.767.2071. doi:10.1126/science.1253253. PMID 24993348. S2CID 206556796.
  34. Hatzes, Artie P. (January 2016). "Periodic Hα variations in GL 581: Further evidence for an activity origin to GL 581d". Astronomy & Astrophysics. 585: A144. arXiv:1512.00878. Bibcode:2016A&A...585A.144H. doi:10.1051/0004-6361/201527135. S2CID 55623630.
  35. Knutson, Heather A.; David Charbonneau; Lori E. Allen; Jonathan J. Fortney; Eric Agol; Nicolas B. Cowan; Adam P. Showman; Curtis S. Cooper; S. Thomas Megeath (10 May 2007). "A map of the day–night contrast of the extrasolar planet HD 189733b". Nature. 447 (7141): 183–186. arXiv:0705.0993. Bibcode:2007Natur.447..183K. doi:10.1038/nature05782. PMID 17495920. S2CID 4402268.
  36. Borucki, William J.; et al. (18 April 2013). "Kepler-62: A Five-Planet System with Planets of 1.4 and 1.6 Earth Radii in the Habitable Zone". Science Express. 340 (6132): 587–590. arXiv:1304.7387. Bibcode:2013Sci...340..587B. doi:10.1126/science.1234702. PMID 23599262. S2CID 21029755.
  37. Borucki, William; Thompson, Susan E.; Agol, Eric; Hedges, Christina (2018). "Kepler-62f: Kepler's first small planet in the habitable zone, but is it real?". New Astronomy Reviews. 83: 28–36. arXiv:1905.05719. Bibcode:2018NewAR..83...28B. doi:10.1016/j.newar.2019.03.002. S2CID 153313459.
  38. ScienceDaily, "First Planets Found Around Sun-Like Stars in a Cluster", 14 September 2012
  39. Masuda, Kento; Hirano, Teruyuki; Taruya, Atsushi; Nagasawa, Makiko; Suto, Yasushi; Kite, Edwin S.; Stapelfeldt, Karl; Marois, Christian; Krist, John (2013). "Characterization of the Koi-94 System with Transit Timing Variation Analysis: Implication for the Planet-Planet Eclipse". The Astrophysical Journal. 778 (2): 185–200. arXiv:1310.5771. Bibcode:2013ApJ...778..185M. doi:10.1088/0004-637X/778/2/185. S2CID 119264400.
  40. SpaceDaily, First Transiting Planets in a Star Cluster Discovered, 27 June 2013
  41. NASA Space Telescopes Find Patchy Clouds on Exotic World nasa.gov
  42. Cowen, R. (2014-04-30). "First exoplanet seen spinning". Nature. doi:10.1038/nature.2014.15132. S2CID 123849861.
  43. Landau, Elizabeth; Villard, Ray (2 August 2017). "Hubble Detects Exoplanet with Glowing Water Atmosphere". NASA. Retrieved 3 August 2017.
  44. Evans, Thomas M.; et al. (2 August 2017). "An ultrahot gas-giant exoplanet with a stratosphere". Nature. 548 (7665): 58–61. arXiv:1708.01076. Bibcode:2017Natur.548...58E. doi:10.1038/nature23266. PMID 28770846. S2CID 205258293.
  45. Gough, Evan (1 October 2020). "A Rogue Earth-Mass Planet Has Been Discovered Freely Floating in the Milky Way Without a Star". Universe Today. Retrieved 2 October 2020.
  46. Mroz, Przemek; et al. (29 September 2020). "A Terrestrial-mass Rogue Planet Candidate Detected in the Shortest-timescale Microlensing Event". The Astrophysical Journal Letters. 903 (1): L11. arXiv:2009.12377. Bibcode:2020ApJ...903L..11M. doi:10.3847/2041-8213/abbfad. S2CID 221971000.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.