Amphetamine, the prototypical monoamine releasing agent, which acts on norepinephrine and dopamine.

A monoamine releasing agent (MRA), or simply monoamine releaser, is a drug that induces the release of a monoamine neurotransmitter from the presynaptic neuron into the synapse, leading to an increase in the extracellular concentrations of the neurotransmitter. Many drugs induce their effects in the body and/or brain via the release of monoamine neurotransmitters, e.g., trace amines, many substituted amphetamines, and related compounds.

Types of MRAs

MRAS can be classified by the monoamines they mainly release, although these drugs lie on a spectrum.

Mechanism of action

MRAs cause the release of monoamine neurotransmitters by various complex mechanism of actions. They may enter the presynaptic neuron primarily via plasma membrane transporters, such as the dopamine transporter (DAT), norepinephrine transporter (NET), and serotonin transporter (SERT). Some, such as exogenous phenethylamine, amphetamine, and methamphetamine, can also diffuse directly across the cell membrane to varying degrees. Once inside the presynaptic neuron, they may inhibit the reuptake of monoamine neurotransmitters through vesicular monoamine transporter 2 (VMAT2) and release the neurotransmitters stores of synaptic vesicles into the cytoplasm by inducing reverse transport at VMAT2. MRAs can also bind to the intracellular receptor TAAR1 as agonists, which triggers a phosphorylation cascade via protein kinases that results in the phosphorylation of monoamine transporters located at the plasma membrane (i.e., the dopamine transporter, norepinephrine transporter, and serotonin transporter); upon phosphorylation, these transporters transport monoamines in reverse (i.e., they move monoamines from the neuronal cytoplasm into the synaptic cleft).[1] The combined effects of MRAs at VMAT2 and TAAR1 result in the release of neurotransmitters out of synaptic vesicles and the cell cytoplasm into the synaptic cleft where they bind to their associated presynaptic autoreceptors and postsynaptic receptors. Certain MRAs interact with other presynaptic intracellular receptors which promote monoamine neurotransmission as well (e.g., methamphetamine is also an agonist at σ1 receptor).

Effects

Monoamine releasing agents can have a wide variety of effects depending upon their selectivity for monoamines. Selective serotonin releasing agents such as fenfluramine and related compounds are described as dysphoric and lethargic in lower doses, and in higher doses some hallucinogenic effects have been reported.[2][3] Less selective serotonergic agents that stimulate an efflux in dopamine, such as MDMA are described as more pleasant, increasing energy, sociability and elevating mood.[4] Dopamine releasing agents, usually selective for both norepinephrine and dopamine have psychostimulant effect, causing an increase in energy, and elevated mood.[5] Other variables can significantly affect the subjective effects, such as infusion rate(increasing positive effects of cocaine), and expectancy.[6] Selectively noradrenergic drugs are minimally psychoactive, but as demonstrated by ephedrine may be distinguished from placebo, and trends towards liking.[7] They may also be ergogenic,[8] in contrast to reboxetine which is solely a reuptake inhibitor.[9][10]

Selectivity

MRAs act to varying extents on serotonin, norepinephrine, and dopamine. Some induce the release of all three neurotransmitters to a similar degree, like MDMA, while others are more selective. As examples, amphetamine and methamphetamine are NDRAs but only very weak releasers of serotonin (~60- and 30-fold less than dopamine, respectively) and MBDB is a fairly balanced SNRA but a weak releaser of dopamine (~6- and 10-fold lower for dopamine than norepinephrine or serotonin, respectively). Even more selective include agents like fenfluramine, a selective SRA, and ephedrine, a selective NRA. The differences in selectivity of these agents is the result of different affinities as substrates for the monoamine transporters, and thus differing ability to gain access into monoaminergic neurons and induce monoamine neurotransmitter release via the TAAR1 and VMAT2 proteins.

As of present, no selective DRAs are known. This is because it has proven extremely difficult to separate DAT affinity from NET affinity and retain releasing efficacy at the same time.[11] Several selective SDRAs are known however, though these compounds also act as non-selective serotonin receptor agonists.[12]

Activity profiles

Activity profiles of MRAs (EC50, nM)[13][14]
Compound5-HTNEDATypeClassRef
2C-E>100000>100000>100000IAPhenethylamine[15]
2C-I>100000>100000>100000IAPhenethylamine[15]
3-ChloromethcathinoneNDND46.8NDCathinone[16]
3-Fluoroamphetamine193716.124.2NDRAAmphetamine[17]
3-Methylamphetamine21818.333.3NDRAAmphetamine[17]
4-Fluoroamphetamine730–93928.0–3751.5–200NDRAAmphetamine[17][15]
cis-4-Methylaminorex53.24.81.7NDRAAminorex[18]
4-Methylamphetamine53.422.244.1SNDRAAmphetamine[17]
4-MethylphenethylamineNDND271NDPhenethylamine[16]
4-Methylthiomethamphetamine21NDNDNDAmphetamine[19]
4,4'-DimethylaminorexNDNDNDSNDRAAminorexND
  ''cis''-4,4'-Dimethylaminorex17.7–18.511.8–26.98.6–10.9SNDRAAminorex[18][20]
  ''trans''-4,4'-Dimethylaminorex59.931.624.4SNDRAAminorex[20]
5-(2-Aminopropyl)indole28–104.813.3–7912.9–173SNDRAAmphetamine[12][21]
  (''R'')-5-(2-Aminopropyl)indole177811062SNRAAmphetamine[12]
  (''S'')-5-(2-Aminopropyl)indoleNDNDNDSNDRAAmphetamineND
5-Chloro-αMT16343454SDRATryptamine[12]
5-Fluoro-αMT1912632SNDRATryptamine[12]
5-MeO-αMT46089001500SNDRATryptamine[15]
5-MeO-DMT>100000>100000>100000IATryptamine[15]
6-(2-Aminopropyl)indole19.925.6164.0SNDRAAmphetamine[21]
AdderallNDNDNDNDRAAmphetamineND
α-Methyltryptamine6879180SNDRATryptamine[15]
Amfepramone (diethylpropion)>10000>10000>10000PDCathinone[22]
Aminorex193–41415.1–26.49.1–49.4SNDRAAminorex[23][18]
AmphetamineNDNDNDNDRAAmphetamineND
  D-Amphetamine698–17656.6–7.25.8–24.8NDRAAmphetamine[23][24]
  L-AmphetamineNDNDNDNRAAmphetamineND
β-KetophenethylamineNDND208NDPhenethylamine[16]
BDB1805402,300NDRAAmphetamine[15]
Benzylpiperazine≥605062–68175–600NDRAArylpiperazine[15][25][14]
ButylamphetamineNDNDIANDAmphetamine[16]
CathinoneNDNDNDNDRACathinoneND
  D-CathinoneNDNDNDNRACathinoneND
  L-Cathinone236612.418.5NDRACathinone[26]
Chlorphentermine30.9>100002650SRAAmphetamine[23]
DMPP26561207SNRAArylpiperazine[19]
Dopamine>1000066.286.9NDRAPhenethylamine[23]
DPT>100000>100000>100000IATryptamine[15]
EphedrineNDNDNDNDRACathinolND
  D-Ephedrine>1000043.1–72.4236–1350NDRACathinol[23]
  L-Ephedrine>100002182104NRACathinol[23][26]
EpinephrineNDNDNDNDRAPhenethylamineND
Ethcathinone211899.3>1000NRACathinone[22]
EthylamphetamineNDND296NDAmphetamine[16]
Fenfluramine79.3–108739>10000SRAAmphetamine[23][27][28]
  D-Fenfluramine51.7302>10000SNRAAmphetamine[23][27]
  L-Fenfluramine147>10000>10000SRAAmphetamine[27][29]
MBDB5403300>100,000SNRAAmphetamine[15]
mCPP28–38.1≥140063000SRAArylpiperazine[15][29][30]
MDA160108190SNDRAAmphetamine[28]
  (''R'')-MDA310290900SNDRAAmphetamine[28]
  (''S'')-MDA1005098SNDRAAmphetamine[28]
MDEA472608622SNDRAAmphetamine[19]
  (''R'')-MDEA52651507SNDRAAmphetamine[19]
  (''S'')-MDEA465RIRISRAAmphetamine[19]
MDMA49.6–7254.1–11051.2–278SNDRAAmphetamine[23][31][21][28]
  (''R'')-MDMA3405603700SNDRAAmphetamine[28]
  (''S'')-MDMA74136142SNDRAAmphetamine[28]
MDMARNDNDNDSNDRAAminorexND
  ''cis''-MDMAR43.914.810.2SNDRAAminorex[20]
  ''trans''-MDMAR73.438.936.2SNDRAAminorex[20]
Mephedrone118.3–12258–62.749.1–51SNDRACathinone[31][24]
Methamnetamine133410SNDRAAmphetamine[19]
MethamphetamineNDNDNDNDRAAmphetamineND
  D-Methamphetamine736–1291.712.3–13.88.5–24.5NDRAAmphetamine[23][31]
  L-Methamphetamine464028.5416NRAAmphetamine[23]
MethcathinoneNDNDNDNDRACathinoneND
  D-MethcathinoneNDNDNDNRACathinoneND
  L-Methcathinone177213.114.8NDRACathinone[26]
Methylone234–242.1140–152.3117–133.0SNDRACathinone[31][24]
Naphthylisopropylamine3.411.112.6SNDRAAmphetamine[32]
NorephedrineNDNDNDNDRACathinolND
  D-Norephedrine>1000042.1302NDRACathinol[26]
  L-Norephedrine (phenylpropanolamine)>100001371371NRACathinol[26]
Norepinephrine>10000164869NDRAPhenethylamine[23]
Norfenfluramine104168–1701900–1925SNRAAmphetamine[27][28]
NorpropylhexedrineNDNDNDNDRACyclohexethylamineND
  D-NorpropylhexedrineNDNDNDNRACyclohexethylamineND
  L-NorpropylhexedrineNDNDNDNDRACyclohexethylamineND
NorpseudoephedrineNDNDNDNDRACathinolND
  D-Norpseudoephedrine (cathine)>1000015.068.3NDRACathinol[26]
  L-Norpseudoephedrine>1000030.1294NDRACathinol[26]
oMPP17539.1296–542SNDRAArylpiperazine[33][16]
PAL-738236558SNDRAPhenylmorpholine[19]
PhenethylamineNDND39.5NDRAPhenethylamine[16]
Phendimetrazine>100000>10000>10000PDPhenylmorpholine[34]
Phenmetrazine776550.4131NDRAPhenylmorpholine[34]
Phentermine351139.4262NDRAAmphetamine[23]
PhenylalaninolNDNDNDNDAmphetamineND
  D-Phenylalaninol>100001061355NRAAmphetamine[33]
  L-PhenylalaninolNDNDNDNDAmphetamineND
PhenylisobutylamineNDND225NDAmphetamine[16]
pMPP3200150011000SNRAArylpiperazine[15]
pNPP43>10000>10000SRAArylpiperazine[19]
PropylamphetamineNDNDRI (1013)NDAmphetamine[16]
PropylhexedrineNDNDNDNDRACyclohexethylamineND
  D-PropylhexedrineNDNDNDNRACyclohexethylamineND
  L-PropylhexedrineNDNDNDNDRACyclohexethylamineND
PseudoephedrineNDNDNDNDRACathinolND
  D-Pseudoephedrine>1000040929125NDRACathinol[26]
  L-Pseudoephedrine>100002241988NRACathinol[26]
Pseudophenmetrazine>10000514RINRAPhenylmorpholine[34]
Psilocin561>10000>10000SRATryptamine[19]
Serotonin44.4>10000>10000SRATryptamine[23]
TFMPP121ND>10000SRAArylpiperazine[25]
TFMCPP33>10000>10000SRAArylpiperazine[19]
Trimethoxyamphetamine16000>100000>100000IAAmphetamine[15]
Tyramine277540.6119NDRAPhenethylamine[23]
The smaller the value, the more strongly the substance activates or releases the neurotransmitter.

See also

References

  1. Miller GM (January 2011). "The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity". Journal of Neurochemistry. 116 (2): 164–76. doi:10.1111/j.1471-4159.2010.07109.x. PMC 3005101. PMID 21073468.
  2. Brust JC (2004). Neurological Aspects of Substance Abuse. Butterworth-Heinemann. pp. 117–. ISBN 978-0-7506-7313-6.
  3. United States. Congress. Senate. Select Committee on Small Business. Subcommittee on Monopoly and Anticompetitive Activities (1976). Competitive problems in the drug industry: hearings before Subcommittee on Monopoly and Anticompetitive Activities of the Select Committee on Small Business, United States Senate, Ninetieth Congress, first session. U.S. Government Printing Office. pp. 2–. {{cite book}}: |author= has generic name (help)
  4. Parrott AC, Stuart M (1 September 1997). "Ecstasy (MDMA), amphetamine, and LSD: comparative mood profiles in recreational polydrug users". Human Psychopharmacology: Clinical and Experimental. 12 (5): 501–504. CiteSeerX 10.1.1.515.2896. doi:10.1002/(sici)1099-1077(199709/10)12:5<501::aid-hup913>3.3.co;2-m. ISSN 1099-1077.
  5. Morean ME, de Wit H, King AC, Sofuoglu M, Rueger SY, O'Malley SS (May 2013). "The drug effects questionnaire: psychometric support across three drug types". Psychopharmacology. 227 (1): 177–92. doi:10.1007/s00213-012-2954-z. PMC 3624068. PMID 23271193.
  6. Nelson RA, Boyd SJ, Ziegelstein RC, Herning R, Cadet JL, Henningfield JE, Schuster CR, Contoreggi C, Gorelick DA (March 2006). "Effect of rate of administration on subjective and physiological effects of intravenous cocaine in humans". Drug and Alcohol Dependence. 82 (1): 19–24. doi:10.1016/j.drugalcdep.2005.08.004. PMID 16144747.
  7. Berlin I, Warot D, Aymard G, Acquaviva E, Legrand M, Labarthe B, Peyron I, Diquet B, Lechat P (September 2001). "Pharmacodynamics and pharmacokinetics of single nasal (5 mg and 10 mg) and oral (50 mg) doses of ephedrine in healthy subjects". European Journal of Clinical Pharmacology. 57 (6–7): 447–55. doi:10.1007/s002280100317. PMID 11699608.
  8. Powers ME (October 2001). "Ephedra and its application to sport performance: another concern for the athletic trainer?". Journal of Athletic Training. 36 (4): 420–4. PMC 155439. PMID 16558668.
  9. Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF (1 January 2006). "Central fatigue: the serotonin hypothesis and beyond". Sports Medicine. 36 (10): 881–909. doi:10.2165/00007256-200636100-00006. PMID 17004850.
  10. Roelands B, Meeusen R (March 2010). "Alterations in central fatigue by pharmacological manipulations of neurotransmitters in normal and high ambient temperature". Sports Medicine. 40 (3): 229–46. doi:10.2165/11533670-000000000-00000. PMID 20199121.
  11. Rothman RB, Blough BE, Baumann MH (January 2007). "Dual dopamine/serotonin releasers as potential medications for stimulant and alcohol addictions". The AAPS Journal. 9 (1): E1–10. doi:10.1208/aapsj0901001. PMC 2751297. PMID 17408232.
  12. 1 2 3 4 5 Banks ML, Bauer CT, Blough BE, Rothman RB, Partilla JS, Baumann MH, Negus SS (2014). "Abuse-related effects of dual dopamine/serotonin releasers with varying potency to release norepinephrine in male rats and rhesus monkeys". Exp Clin Psychopharmacol. 22 (3): 274–284. doi:10.1037/a0036595. PMC 4067459. PMID 24796848.
  13. Rothman RB, Baumann MH (2003). "Monoamine transporters and psychostimulant drugs". Eur. J. Pharmacol. 479 (1–3): 23–40. doi:10.1016/j.ejphar.2003.08.054. PMID 14612135.
  14. 1 2 Rothman RB, Baumann MH (2006). "Therapeutic potential of monoamine transporter substrates". Current Topics in Medicinal Chemistry. 6 (17): 1845–59. doi:10.2174/156802606778249766. PMID 17017961.
  15. 1 2 3 4 5 6 7 8 9 10 11 12 13 Nagai F, Nonaka R, Satoh Hisashi Kamimura K (2007). "The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain". Eur. J. Pharmacol. 559 (2–3): 132–7. doi:10.1016/j.ejphar.2006.11.075. PMID 17223101.
  16. 1 2 3 4 5 6 7 8 9 Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH, Partilla JS, Rothman RB, Katz JL (2015). "Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter". Drug Alcohol Depend. 147: 1–19. doi:10.1016/j.drugalcdep.2014.12.005. PMC 4297708. PMID 25548026.
  17. 1 2 3 4 Wee S, Anderson KG, Baumann MH, Rothman RB, Blough BE, Woolverton WL (May 2005). "Relationship between the serotonergic activity and reinforcing effects of a series of amphetamine analogs". The Journal of Pharmacology and Experimental Therapeutics. 313 (2): 848–54. doi:10.1124/jpet.104.080101. PMID 15677348. S2CID 12135483.
  18. 1 2 3 Brandt SD, Baumann MH, Partilla JS, Kavanagh PV, Power JD, Talbot B, Twamley B, Mahony O, O'Brien J, Elliott SP, Archer RP, Patrick J, Singh K, Dempster NM, Cosbey SH (2014). "Characterization of a novel and potentially lethal designer drug (±)-cis-para-methyl-4-methylaminorex (4,4'-DMAR, or 'Serotoni')". Drug Test Anal. 6 (7–8): 684–95. doi:10.1002/dta.1668. PMC 4128571. PMID 24841869.
  19. 1 2 3 4 5 6 7 8 9 10 Rothman RB, Partilla JS, Baumann MH, Lightfoot-Siordia C, Blough BE (2012). "Studies of the biogenic amine transporters. 14. Identification of low-efficacy "partial" substrates for the biogenic amine transporters". J. Pharmacol. Exp. Ther. 341 (1): 251–62. doi:10.1124/jpet.111.188946. PMC 3364510. PMID 22271821.
  20. 1 2 3 4 McLaughlin G, Morris N, Kavanagh PV, Power JD, Twamley B, O'Brien J, Talbot B, Dowling G, Mahony O, Brandt SD, Patrick J, Archer RP, Partilla JS, Baumann MH (2015). "Synthesis, characterization, and monoamine transporter activity of the new psychoactive substance 3',4'-methylenedioxy-4-methylaminorex (MDMAR)". Drug Test Anal. 7 (7): 555–64. doi:10.1002/dta.1732. PMC 5331736. PMID 25331619.
  21. 1 2 3 Marusich JA, Antonazzo KR, Blough BE, Brandt SD, Kavanagh PV, Partilla JS, Baumann MH (2016). "The new psychoactive substances 5-(2-aminopropyl)indole (5-IT) and 6-(2-aminopropyl)indole (6-IT) interact with monoamine transporters in brain tissue". Neuropharmacology. 101: 68–75. doi:10.1016/j.neuropharm.2015.09.004. PMC 4681602. PMID 26362361.
  22. 1 2 Yu H, Rothman RB, Dersch CM, Partilla JS, Rice KC (2000). "Uptake and release effects of diethylpropion and its metabolites with biogenic amine transporters". Bioorg. Med. Chem. 8 (12): 2689–92. doi:10.1016/s0968-0896(00)00210-8. PMID 11131159.
  23. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (January 2001). "Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin". Synapse. 39 (1): 32–41. doi:10.1002/1098-2396(20010101)39:1<32::AID-SYN5>3.0.CO;2-3. PMID 11071707. S2CID 15573624.
  24. 1 2 3 Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, Rothman RB, Goldberg SR, Lupica CR, Sitte HH, Brandt SD, Tella SR, Cozzi NV, Schindler CW (2013). "Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive 'bath salts' products". Neuropsychopharmacology. 38 (4): 552–62. doi:10.1038/npp.2012.204. PMC 3572453. PMID 23072836.
  25. 1 2 Baumann MH, Clark RD, Budzynski AG, Partilla JS, Blough BE, Rothman RB (2005). "N-substituted piperazines abused by humans mimic the molecular mechanism of 3,4-methylenedioxymethamphetamine (MDMA, or 'Ecstasy')". Neuropsychopharmacology. 30 (3): 550–60. doi:10.1038/sj.npp.1300585. PMID 15496938.
  26. 1 2 3 4 5 6 7 8 9 Rothman RB, Vu N, Partilla JS, Roth BL, Hufeisen SJ, Compton-Toth BA, Birkes J, Young R, Glennon RA (2003). "In vitro characterization of ephedrine-related stereoisomers at biogenic amine transporters and the receptorome reveals selective actions as norepinephrine transporter substrates". J. Pharmacol. Exp. Ther. 307 (1): 138–45. doi:10.1124/jpet.103.053975. PMID 12954796. S2CID 19015584.
  27. 1 2 3 4 Rothman RB, Clark RD, Partilla JS, Baumann MH (2003). "(+)-Fenfluramine and its major metabolite, (+)-norfenfluramine, are potent substrates for norepinephrine transporters". J. Pharmacol. Exp. Ther. 305 (3): 1191–9. doi:10.1124/jpet.103.049684. PMID 12649307. S2CID 21164342.
  28. 1 2 3 4 5 6 7 8 Setola V, Hufeisen SJ, Grande-Allen KJ, Vesely I, Glennon RA, Blough B, Rothman RB, Roth BL (2003). "3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro". Mol. Pharmacol. 63 (6): 1223–9. doi:10.1124/mol.63.6.1223. PMID 12761331. S2CID 839426.
  29. 1 2 Rothman RB, Baumann MH (2002). "Therapeutic and adverse actions of serotonin transporter substrates". Pharmacol. Ther. 95 (1): 73–88. doi:10.1016/s0163-7258(02)00234-6. PMID 12163129.
  30. Rothman RB, Baumann MH (2002). "Serotonin releasing agents. Neurochemical, therapeutic and adverse effects". Pharmacol. Biochem. Behav. 71 (4): 825–36. doi:10.1016/s0091-3057(01)00669-4. PMID 11888573.
  31. 1 2 3 4 Baumann MH, Ayestas MA, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (2012). "The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue". Neuropsychopharmacology. 37 (5): 1192–203. doi:10.1038/npp.2011.304. PMC 3306880. PMID 22169943.
  32. Rothman RB, Blough BE, Woolverton WL, Anderson KG, Negus SS, Mello NK, Roth BL, Baumann MH (June 2005). "Development of a rationally designed, low abuse potential, biogenic amine releaser that suppresses cocaine self-administration". The Journal of Pharmacology and Experimental Therapeutics. 313 (3): 1361–9. doi:10.1124/jpet.104.082503. PMID 15761112.
  33. 1 2 Kohut SJ, Jacobs DS, Rothman RB, Partilla JS, Bergman J, Blough BE (2017). "Cocaine-like discriminative stimulus effects of "norepinephrine-preferring" monoamine releasers: time course and interaction studies in rhesus monkeys". Psychopharmacology. 234 (23–24): 3455–3465. doi:10.1007/s00213-017-4731-5. PMC 5747253. PMID 28889212.
  34. 1 2 3 Rothman RB, Katsnelson M, Vu N, Partilla JS, Dersch CM, Blough BE, Baumann MH (2002). "Interaction of the anorectic medication, phendimetrazine, and its metabolites with monoamine transporters in rat brain". Eur. J. Pharmacol. 447 (1): 51–7. doi:10.1016/s0014-2999(02)01830-7. PMID 12106802.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.