Urban wildlife: an eastern grey squirrel in Montreal scavenging for food in a garbage can
Pigeons intermingle with tourists in Venice
Blue tongued skink in suburban street in Canberra (10.2 cm storm water pipe in photo shows size)

Urban wildlife is wildlife that can live or thrive in urban/suburban environments or around densely populated human settlements such as townships.

Some urban wildlife, such as house mice, are synanthropic, ecologically associated with and even evolved to become entirely dependent on human habitats. For instance, the range of many synanthropic species is expanded to latitudes at which they could not survive the winter outside of the shelterings provided by human settlements. Other species simply tolerate cohabiting around humans and use the remaining urban forests, parklands, green spaces and garden/street vegetations as niche habitats, in some cases gradually becoming sufficiently accustomed around humans to also become synanthropic over time. These species represent a minority of the natural creatures that would normally inhabit an area, and contain a large proportions of feral and introduced species as opposed to truly native species. For example, a 2014 compilation of studies found that only 8% of native bird and 25% of native plant species were present in urban areas compared with estimates of non-urban density of species.[1]

Urban wildlife can be found at any latitude that supports human dwellings - the list of animals that will venture into urbanized human settlements to forage on horticultures or to scavenge from trash runs from monkeys in the tropics to polar bears in the Arctic.

Different types of urban areas support different kinds of wildlife. One general feature of bird species that adapt well to urban environments is they tend to be the species with bigger brains, perhaps allowing them to be more behaviorally adaptable to the more volatile urban environment.[2] Arthropods (insects, spiders and millipedes), gastropods (land snails and slugs), various worms and some reptiles (e.g. house geckos) can also thrive well in the niches of human settlements.

Evolution

Urban environments can exert novel selective pressures on organisms, sometimes leading to new adaptations. For example, the weed Crepis sancta, found in France, has two types of seed, heavy and fluffy. The heavy ones land near the parent plant, whereas the fluffy seeds float further away on the wind. In urban environments, seeds that float far often land on infertile concrete surfaces. Within about 5-12 generations the weed has been found to evolve to produce significantly more heavy seeds than its rural relatives.[3][4] Among vertebrates, a case is urban great tits, which have been found to sing at a higher pitch than their rural relatives so that their songs stand out above the city noise, although this is probably a learned rather than evolved response.[5][6] Urban silvereyes, an Australian bird, make contact calls that are higher frequency and slower than those of rural silvereyes. As it appears that contact calls are instinctual and not learnt, this has been suggested as evidence that urban silvereyes have undergone recent evolutionary adaptation so as to better communicate in noisy urban environments.[7]

Animals that inhabit urban environments have differences in morphology, physiology and behavior when compared to animals that inhabit less urbanized areas.[8] Hormone-mediated maternal effects are capable mechanisms of offspring phenotypic developmental modification.[8] For instance, when female birds deposit androgens into their eggs, this affects many diverse aspects of offspring development and phenotype.[8] Environmental factors that can influence the concentration of androgens in avian eggs include nest predation risk, breeding density, food abundance and parasite prevalence, all factors of which differ between urban and natural habitats.[8] In a study that compared antibody and maternal hormone concentrations in eggs between an urban population and a forest population of European blackbirds, there were found to be clear differences in yolk androgen concentrations between the two populations. Although these differences cannot be attributed definitively (more studies have to be performed), they might result from different environments causing females to plastically adjust yolk androgens.[8] Different yolk androgen levels are likely to program offspring phenotype.[8]

Plant genetic variation has an influence on herbivore population dynamics and other dependent communities.[9] Conversely, different arthropod genotypes have varying abilities to live on different host plant species.[9] Differential reproduction of herbivores could lead to adaptation to particular host plant genotypes.[9] For instance, in two experiments that examined local adaptation and evolution of a free-feeding aphid (Chaitophorus populicola) in response to genetic variants of its host plant (Populus angustifolia), it was found that, 21 days (about two aphid generations) after aphid colony transplantation onto trees from foreign sites, aphid genotype composition had changed.[9] In the experiments, tree cuttings and aphid colonies were collected from three different sites and used to conduct a reciprocal transplant experiment. Aphids that were transplanted onto trees from the same site produced 1.7-3.4 times as many offspring as aphids that were transplanted onto trees from different sites. These two results indicate that activities of human perturbation that cause plant evolution may also result in evolutionary responses in interacting species that could escalate to affect entire communities.[9]

Wildlife species that inhabit urban areas often experience shifts in food and resource availability.[10] Some species, at times, must resort to human handouts or even human refuse as a source of food.[10] One animal notorious for relying on such means for nutritional intake is the American white ibis.[10] In a study that tested physiological challenge, the innate and adaptive immunity of two groups of white ibis (both consisting of 10 white ibis nurtured in captivity), one group being fed a simulated anthropogenic diet and the other being fed a natural ibis diet, it was determined that the wildlife consumption of a diet with anthropogenic components (such as white bread) may be detrimental to a species’ ability to battle bacterial pathogens.[10]

Human–wildlife conflict

While urban areas tend to decrease the overall biodiversity of species within the city, most cities retain the flora and fauna characteristic of their geographic area.[11] As rates of urbanization and city sprawl increase worldwide, many urban areas sprawl further into wildlife habitat, causing increased human-wildlife encounters and the potential for negative and conflict-based encounters.[12] Humans have lived alongside and near wild animals for centuries, but the expansion of the study of urban ecology has allowed for new information surrounding human-wildlife interactions.[11] Human wildlife conflict can be categorized into disease transmission, physical attacks, and property damage,[11] and can be inflicted by a range of wildlife, from predatory tigers to grain-eating rodents.[13]

Benefits of human–wildlife interactions

Urban coyotes are often at the forefront of human-wildlife conflicts in areas of Los Angeles County due to their ability to adapt to urban environments.[14]

While negative human-wildlife conflicts can be damaging to the physical health of humans or property, human-wildlife interactions can be extremely beneficial in terms ecosystem health and cultural experiences.The presence of native species allows systems and food chains to function in a healthy way, providing ecosystem services to the humans living around these areas. These services include the provisioning of food and water, flood control, cultural services, and nutrient cycling.[11] Due to those perceived benefits urban rewilding is now an active movement.[15]

Costs of conflict

The most direct impacts of human-wildlife conflict include loss of livelihood due to property damage, loss of possessions due to property damage, injury, or transmission of disease from wildlife to humans.[11] After the direct impacts of conflict, however, the people facing human-wildlife conflict are left with long-term issues including opportunity costs and long-term fear of wildlife.[13]

Conflicts between human and wildlife are most likely to occur in areas intermediate between rural and entirely urban landscapes, and these interactions are most likely to involve species with broad diets able to live in areas with high populations. Some areas are subject to more extreme conflicts between humans and wildlife, such as in Mozambique and Namibia, where more than 100 people are killed each year by crocodiles. In Asia and Africa, many communities are also subject to 10-15% loss of agricultural output to elephants.[16] Disease transmission is also significant in cases of human-wildlife conflict, where sprawling cities can expand into environments that increase exposure to hosts of vector-borne diseases, causing large outbreaks in cities with greater density of people.[11] Modern examples of disease outbreaks from wildlife include the H5N1 virus (originating from and spread via birds) and SARS-CoV-2 (likely originated as a bat virome before jumping species).[17][18] With the latter causing the COVID-19 pandemic that wrought significant global economic, political, and sociological turmoil within one year from its outbreak.

Conflict management

At the center of human-wildlife conflicts in urban areas are social attitudes towards wildlife encounters.[13][16] A certain community's perception of risk of wildlife encounter greatly impacts their attitude towards wildlife, particularly in situations where livelihoods or safety are at risk.[13] Many cutting-edge wildlife conflict management proposals include education programs to inform the public of both the risks and benefits of interacting with urban wildlife, and how to prevent hysteria and future negative encounters.[11][19] Furthermore, conflict management includes addressing the hidden impacts of wildlife conflict, such as the disruption psychosocial wellbeing, disruption of livelihood and food sources, and food insecurity.[16]

Broadly distributed

Some urban species have a cosmopolitan (i.e. nonselective) distribution, in some cases almost global. They include cockroaches,[20] silverfish,[21] house mice,[22] black/brown rats,[23] house sparrows,[24] rock doves[25] and feral populations of domestic species.[26]

Africa

African penguins nesting in a roadside suburban storm drain in Cape Town, South Africa

As Africa becomes increasingly urbanized, native animals are exposed to this new environment with the potential of uniquely African urban ecologies developing. In the Cape Town urban area in South Africa, there is increasing conflict between human development and nearby populations of Chacma baboons due to baboons growing dependence on tourists and the urban environment as sources of food.[27] Elsewhere in Africa, vervet monkeys as well as baboons adapt to urbanization, and similarly enter houses and gardens for food. African penguins are also known to invade urban areas, searching for food and a safe place to breed, even nesting inside storm drains. Simon's Town, next to the popular Boulders Beach had to take action to restrict penguin movement due to the noise and damage they caused.[28] There are reports of leopards roaming suburban areas in cities such as Nairobi, Kenya and Windhoek, Namibia. Reptiles like the house gecko (Hemidactylus) can be found in houses.

Wild zebras grazing in Naivasha, Kenya

Australia and New Guinea

Urban areas in Australia are a particularly fruitful habitat type for many wildlife species. Australian cities are hotspots for threatened species diversity and have been shown to support more threatened animal and plant species on a per unit-area basis than all other non-urban habitat types.[29] An analysis of urban sensitive bird species (birds that are easily disturbed and displaced) found that revegetation was effective at encouraging birds back into urban greenspaces, but also found that weed control was not. Invasive plant species such as Lantana (L. camara) actually provides refuge for some bird species such as the superb fairywren (Malurus cyaneus) and silvereye (Zosterops lateralis), in the absence of native plant equivalents.[30]

Some species of native animals on Australia, such as various bird species including the Australian magpie, crested pigeon, rainbow lorikeet, willie wagtail, laughing kookaburra and tawny frogmouth, are able to survive as urban wildlife,[31] although introduced birds such as the Old World sparrow are more common in the centre of larger cities. In Queensland and parts of New Guinea, the local cassowary population has also shown behavioural changes to better adapt in the urban environment as their original rainforest habitats decline in size. These birds were far more alert and rest less than the more 'wild' counterparts, and had quickly adapted to foraging on human waste as it offers a greater reward in food bounties. The urbanisation of these birds have made the cassowaries the largest urbanised birds in the world.[32][33] Some of the most resilient small marsupial species including the common ringtail/brushtail possum, sugar glider and Northern brown bandicoot, and some megabats such as the grey-headed flying fox, have also adapted somewhat to the urban/suburban environment.[34] This being said there are many threats to urban areas in Australia such as habitat loss and fragmentation, invasive species (such as cats and Indian mynas), pest species (such as noisy miners), weeds propagule pressure, and other disturbance that accompany intensive human land use.[35] If biodiversity is to flourish in urban areas, efforts at the community scale thorough initiatives such as Land for Wildlife and private land conservation, as well as policy and management efforts through restricting land clearing and providing incentives to retain nature in cities is needed.

Japan

Although culled aggressively in most of Japan for being a pest, the Sika deer is, for religious reasons, protected in the city of Nara and has become part of the urban environment.[36] Due to the denseness of Japanese cities, birdlife is not as common as other parts of the world, though typical urban birds such as crows, sparrows, and gulls have adapted well.[37]

Hawaii

The urban birdlife of Hawaii is dominated by introduced species, with native species largely remaining only in preserved areas.[38]

New Zealand

The birdlife in the most urban parts of New Zealand is dominated by introduced species, with bush fragments in the less urbanized areas allowing native species to cohabit.[39][40]

India

Rhesus macaques in Agra, northern India

In parts of India, like in some cities of Africa and south-east Asia, Monkeys, such as langurs, also enter cities for food, and cause havoc in food markets when they steal fruit from the vendors. In Mumbai, leopards have entered neighbourhoods surrounding the Sanjay Gandhi National Park and killed several people, as the park itself is besieged by a surrounding burgeoning population, where poaching and illegal woodcutting is rife.[41] In Mount Abu, Rajasthan, sloth bears have grown accustomed to entering the town throughout the year to feed on hotel waste in open rubbish bins, and injure several people each year in chance encounters.[42]

Persisting green patches have helped retain over 100 bird species in the mega-city Delhi, which is the capital city of India.[43] Also in Delhi, ponds (wetlands < 5 ha) have been invaluable to support a very diverse bird community helped partly by management interventions that included islands and greening around the wetlands to make the wetlands attractive for people.[44] Ponds constituted 0.5% of the land area of Delhi but supported 37% of all bird species ever documented in the city suggesting that even highly populated cities like Delhi can be important bird refugia if small habitat patches are retained.

Europe

Many towns in the United Kingdom have Urban Wildlife Groups that work to preserve and encourage urban wildlife. One example is Oxford.[45]

Outside

An introduced wild population of black swans (Cygnus atratus), originally being native to Australia, have become a prominent symbol of the town of Dawlish, Devon in the United Kingdom.

Urban areas range from fully urban – areas having little green space and mostly covered by paving, tarmac, or buildings – to suburban areas with gardens and parks. Pigeons are found scavenging on scraps of food left by humans and nesting on buildings, even in the most urban areas, as the tall buildings resemble their natural rocky homes in the mountains. Rats can also be found scavenging on food. Gulls of various types also breed and scavenge in various U.K. cities. A study by the bird biologist Peter Rock, Europe's leading authority on urban gulls, into the rise of herring gulls and lesser black-backed gulls in Bristol has discovered that in 20 years the city's colony has grown from about 100 pairs to more than 1,200. From a gull's point of view, buildings are simply cliff-sided islands, with no predators and much nearby food. The trend is the same in places as far apart as Gloucester and Aberdeen. With an endless supply of food, more city chicks survive each year, and become accustomed to urban living. They in turn breed even more birds, with less reason to undertake a winter migration.[46]

Waterfowl such as Ducks, Coots, Geese, Swans, and Moorhens thrive in gardens and parks with access to water. Small populations can form around fountains and other ornamental features, far from natural bodies of water, provided there are adequate amounts of food such as aquatic plants growing in the fountain.

In the United Kingdom, improvements in water quality in urban areas have coincided with reintroduction and conservation projects for the Eurasian otter, resulting in frequent sightings of these animals in urban and suburban environments. Otters have been recorded in settlements of a variety of sizes, ranging from large towns and small cities such as Andover, Inverness and Exeter, to major cities such as London, Manchester, Birmingham and Edinburgh.[47]

From a study conducted on Great Tits living in ten European cities and in ten nearby forests. An analysis was made of the way the birds used songs to attract mates and establish territorial boundaries. Hans Slabbekoorn, of Leiden University in the Netherlands, said that city birds adapt to life by singing faster, shorter, and higher-pitch songs in the cities compared to forests. The forest birds sing low and they sing slow. Great Tits living in noisy cities have to compete with the low-frequency sounds of heavy traffic, which means their songs go up in pitch to make themselves heard.[48] A bird that sang like Barry White in the forest sounded more like Michael Jackson in the big city.[49]

The advent of these animals has also drawn a predator, as Peregrine falcons have also been known to nest in urban areas, nesting on tall buildings and preying on pigeons.[50] The peregrine falcon is becoming more nocturnal in urban environments, using urban lighting to spot its prey. This has provided them with new opportunities to hunt night-flying birds and bats. Red foxes are also in many urban and suburban areas in the U.K. as scavengers.[51] They scavenge, and eat insects and small vertebrates such as pigeons and rodents. People also leave food for them to eat in their gardens. One red fox was even found living at the top of the then-partially completed Shard in 2011, having climbed the stairwell to reach its temporary home some 72 stories above ground.[52]

In some cases even large animals have been found living in cities. Berlin has wild boars.[53] Wild roe deer are becoming increasingly common in green areas in Scottish towns and cities, such as in the Easterhouse suburb of Glasgow.[54] Urban waterways can also contain wildlife, including large animals. In London, since improvements in water quality in the Thames, seals and porpoises have been seen in its waters in the center of the city.[55]

Inside houses

Numerous animals can also live within buildings. Insects that sometimes inhabit buildings include various species of small beetles such as ladybirds, which often seek refuge inside buildings during the winter months,[56] as well as cockroaches. See also housefly.

North America

Many North American species have successfully adapted to urban and suburban environments and are thriving. Typical examples include urban coyotes, the top predator of such regions. Other common urban animals include predators such as (especially) red foxes, grey foxes, and bobcats that prey on small animals such as rodents. Omnivores such as raccoons, Virginia opossums, and striped skunks are abundant, but seldom seen, due to their elusive and nocturnal nature. In the south and southeastern United States and Mexico, the nine-banded armadillo also fills this niche, but due to the armadillo's lack of thick fur, they are unable to thrive in more northern climates. Squirrels, including the American red squirrel, fox squirrel, and especially the eastern grey squirrel are extremely common in areas with enough trees. Herbivores forage in the early morning and evening, with cottontail rabbits, and, in dryer parts of the country, jackrabbits, as well as the two most common deer species in North America: the white-tailed deer and the mule deer. Shy of humans, deer are often spotted as a mother with fawns, or a lone buck creeping through the trees and bushes. As whitetails prefer forest edge and meadow to actual dense forest, the cutting of forests has actually made more habitat for the white-tailed deer, which has increased its numbers beyond what they were at when Europeans arrived in America. In some cities, older deer seem to have learned how to cross streets, as they look back and forth looking for cars while crossing roads, while fawns and younger deer will recklessly run out without looking; most traffic accidents involving deer happen with deer that have just left their mother, and are less likely to watch for cars.

Red-tailed hawks are a common sight in urban areas, with individuals such as Pale Male being documented nesting and raising chicks in New York City since at least the 1990s.

The American alligator, a once-threatened species that was saved from extinction through farming and conservation, can frequently be found in the southern United States living in open areas with access to water, such as golf courses and parks, in its native range.[57][58]

These animals living in urban areas usually come into conflict with humans, as some of them will open garbage bags in search of food, eat food left out for pets, prey on unattended pets, feed on prized garden plants, dig up lawns or become traffic hazards when they run out into the road. There are media accounts of alligators being found in sewer pipes and storm drains, but so-called "sewer alligators" are unlikely to sustain a breeding population in such environments, due to a lack of a place to bury their eggs and food. Urban wildlife is often considered a nuisance, with local governments being tasked to manage the issue.[59]

In 2009, a large blobby mass made of colonies of tubifex worms was found to be living in the sewers of Raleigh, North Carolina. Revealed by a snake camera inspection of sewer piping under the Cameron Village shopping center, videos of the creature went viral on YouTube in 2009 under the name "Carolina poop monster".[60]

Animals known to dwell within human habitations in the US include house centipedes (Scutigera coleoptrata), and firebrats.[61]

South America

Marmosets can be found living wild in city parks in Brazil.[62] Urban-dwelling marmosets tend to return more often to the same sleeping sites than jungle-dwelling marmosets. Urban-dwelling marmosets tend to prefer to sleep in tall trees with high first branches and smooth bark. It has been suggested they do this to avoid cats.[62]

See also

References

  1. Aronson, Myla F. J.; La Sorte, Frank A.; Nilon, Charles H.; Katti, Madhusudan; Goddard, Mark A.; et al. (April 2014). "A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers". Proceedings of the Royal Society B. 281 (1780): 20133330. doi:10.1098/rspb.2013.3330. PMC 4027400. PMID 24523278.
  2. Davies, Ella (2011-04-27). "Adaptable urban birds have bigger brains". BBC News. Retrieved 2013-06-18.
  3. "Evolution in the urban jungle". The Oyster's Garter. 2008-03-12. Archived from the original on 2010-12-03. Retrieved 2013-06-18.
  4. Cheptou, P.; Carrue, O.; Rouifed, S.; Cantarel, A. (2008). "Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta". Proceedings of the National Academy of Sciences. 105 (10): 3796–3799. Bibcode:2008PNAS..105.3796C. doi:10.1073/pnas.0708446105. PMC 2268839. PMID 18316722.
  5. "The urban evolution lab". New Scientist. April 19, 2006. Retrieved 2013-06-18.
  6. Slabbekoorn, Hans; Peet, Margriet (July 2003). "Ecology: Birds sing at a higher pitch in urban noise". Nature. 424 (6946): 267. Bibcode:2003Natur.424..267S. doi:10.1038/424267a. PMID 12867967. S2CID 4348883.
  7. Zukerman, Wendy (2011-01-07). "Hipster bird species evolving to tune out urban sounds". New Scientist. Retrieved 2013-06-18.
  8. 1 2 3 4 5 6 Partecke, Jesko; Hegyi, Gergely; Fitze, Patrick S.; Gasparini, Julien; Schwabl, Hubert (2020). "Maternal effects and urbanization: Variation of yolk androgens and immunoglobulin in city and forest blackbirds". Ecology and Evolution. 10 (4): 2213–2224. doi:10.1002/ece3.6058. ISSN 2045-7758. PMC 7042752. PMID 32128150.
  9. 1 2 3 4 5 Wooley, Stuart C.; Smith, David Solance; Lonsdorf, Eric V.; Brown, Sarah C.; Whitham, Thomas G.; Shuster, Stephen M.; Lindroth, Richard L. (2020). "Local adaptation and rapid evolution of aphids in response to genetic interactions with their cottonwood hosts". Ecology and Evolution. 10 (19): 10532–10542. doi:10.1002/ece3.6709. ISSN 2045-7758. PMC 7548174. PMID 33072278.
  10. 1 2 3 4 Cummings, Caroline R.; Hernandez, Sonia M.; Murray, Maureen; Ellison, Taylor; Adams, Henry C.; Cooper, Robert E.; Curry, Shannon; Navara, Kristen J. (2020). "Effects of an anthropogenic diet on indicators of physiological challenge and immunity of white ibis nestlings raised in captivity". Ecology and Evolution. 10 (15): 8416–8428. doi:10.1002/ece3.6548. ISSN 2045-7758. PMC 7417218. PMID 32788990.
  11. 1 2 3 4 5 6 7 Soulsbury, Carl D.; White, Piran C. L. (2015-07-01). "Human–wildlife interactions in urban areas: a review of conflicts, benefits and opportunities". Wildlife Research. 42 (7): 541–553. doi:10.1071/WR14229. ISSN 1448-5494. S2CID 143017362.
  12. Jokimäki, Jukka; Kaisanlahti-Jokimäki, Marja-Liisa; Suhonen, Jukka; Clergeau, Philippe; Pautasso, Marco; Fernández-Juricic, Esteban (2011-04-30). "Merging wildlife community ecology with animal behavioral ecology for a better urban landscape planning". Landscape and Urban Planning. Landscape and Urban Planning at 100. 100 (4): 383–385. doi:10.1016/j.landurbplan.2011.02.001. ISSN 0169-2046.
  13. 1 2 3 4 Dickman, A. J. (2010). "Complexities of conflict: the importance of considering social factors for effectively resolving human–wildlife conflict". Animal Conservation. 13 (5): 458–466. doi:10.1111/j.1469-1795.2010.00368.x. ISSN 1469-1795. S2CID 83361010.
  14. Howell, Robert G. (1982-02-23). "THE URBAN COYOTE PROBLEM IN LOS ANGELES COUNTY". Proceedings of the Tenth Vertebrate Pest Conference (1982).
  15. Song, Faye. "Rewilding Cities: Why it's needed and how you can help". Mossy Earth. Retrieved 4 December 2022.
  16. 1 2 3 Barua, Maan; Bhagwat, Shonil A.; Jadhav, Sushrut (2013-01-01). "The hidden dimensions of human–wildlife conflict: Health impacts, opportunity and transaction costs". Biological Conservation. 157: 309–316. doi:10.1016/j.biocon.2012.07.014. ISSN 0006-3207.
  17. International Committee on Taxonomy of Viruses (2002). "46.0.1. Influenzavirus A". Archived from the original on 2004-12-07. Retrieved 2006-04-17.
  18. V'kovski P, Kratzel A, Steiner S, Stalder H, Thiel V (March 2021). "Coronavirus biology and replication: implications for SARS-CoV-2". Nat Rev Microbiol (Review). 19 (3): 155–170. doi:10.1038/s41579-020-00468-6. PMC 7592455. PMID 33116300.
  19. Messmer, Terry A (2000-04-01). "The emergence of human–wildlife conflict management: turning challenges into opportunities". International Biodeterioration & Biodegradation. 45 (3): 97–102. doi:10.1016/S0964-8305(00)00045-7. ISSN 0964-8305.
  20. Bell, William J.; Adiyodi, K.G. (1981). American Cockroach. Springer. pp. 1, 4. ISBN 978-0-412-16140-7.
  21. Yates, Julian R. III (December 1992). "Silverfish". University of Hawaii. Retrieved 2009-11-27.
  22. Ballenger, L (1999). "Mus musculus". Animal Diversity Web. Retrieved 5 November 2023.
  23. Baig, M.; Khan, S.; Eager, H.; Atkulwar, A. & Searle, J. B. (2019). "Phylogeography of the black rat Rattus rattus in India and the implications for its dispersal history in Eurasia". Biological Invasions. 21 (2): 417–433. doi:10.1007/s10530-018-1830-0. S2CID 67790305.
  24. BirdLife International (2019) [amended version of 2018 assessment]. "Passer domesticus". IUCN Red List of Threatened Species. 2019: e.T103818789A155522130. doi:10.2305/IUCN.UK.2018-2.RLTS.T103818789A155522130.en. Retrieved 16 March 2022.
  25. BirdLife International (2019) [amended version of 2016 assessment]. "Columba livia". IUCN Red List of Threatened Species. 2019: e.T22690066A155493121. doi:10.2305/IUCN.UK.2016-3.RLTS.T22690066A155493121.en. Retrieved 19 February 2022.
  26. "Species profile: Felis catus". Global Invasive Species Database. 15 September 2010. Retrieved 5 November 2023.
  27. Cruise, Adam (22 April 2016). "Is This the End For South Africa's Famed Urban Baboons?". National Geographic. Archived from the original on April 23, 2016. Retrieved 25 November 2016.
  28. "The African Penguin". simonstown.com. Retrieved 2008-11-19.
  29. Ives, Christopher D.; Lentini, Pia E.; Threlfall, Caragh G.; Ikin, Karen; Shanahan, Danielle F.; Garrard, Georgia E.; Bekessy, Sarah A.; Fuller, Richard A.; Mumaw, Laura (2016-01-01). "Cities are hotspots for threatened species". Global Ecology and Biogeography. 25 (1): 117–126. doi:10.1111/geb.12404. ISSN 1466-8238. S2CID 85803852.
  30. Archibald, Carla L.; McKinney, Matthew; Mustin, Karen; Shanahan, Danielle F.; Possingham, Hugh P. (2017-06-01). "Assessing the impact of revegetation and weed control on urban sensitive bird species". Ecology and Evolution. 7 (12): 4200–4208. doi:10.1002/ece3.2960. ISSN 2045-7758. PMC 5478067. PMID 28649333.
  31. "Birds in Backyards: Top 30 Urban Birds". Australian Museum. 30 October 2015. Retrieved 26 November 2016.
  32. Campbell, Mariana A.; Lawton, Tom; Udyawer, Vinay; Bell-Anderson, Kim S.; Westcott, David; Campbell, Hamish A. (2023). "The southern cassowary (Casuarius casuarius johnsonii) remains an important disperser of native plants in fragmented rainforest landscapes". Austral Ecology. Australia. 48 (4): 787–802. doi:10.1111/aec.13309. S2CID 257705788.
  33. Dennis, Andrew J. (2023). "National Recovery Plan for the Southern Cassowary Casuarius casuarius johnsonii" (PDF). Canberra: Department of Climate Change, Energy, the Environment and Water: 19. {{cite journal}}: Cite journal requires |journal= (help)
  34. Fitzgibbon, S.I. (2010). "The behavioural ecology and population dynamics of a cryptic ground-dwelling mammal in an urban Australian landscape". Austral Ecology. 36 (6): 722–732. doi:10.1111/j.1442-9993.2010.02209.x.
  35. Heinrichs, Steffi; Pauchard, Aníbal (2015-10-01). "Struggling to maintain native plant diversity in a peri-urban reserve surrounded by a highly anthropogenic matrix". Biodiversity and Conservation. 24 (11): 2769–2788. doi:10.1007/s10531-015-0964-y. hdl:10533/148389. ISSN 0960-3115. S2CID 18709635.
  36. Solbig, Zachary (4 February 2015). "The Wild Deer That Roam a Japanese City's Streets". Wired. Retrieved 27 November 2016.
  37. Higuchi, Hiroyoshi (2014). Natural History of Japanese Birds (PDF). Tokyo: Heibonsha.
  38. "Wildlife". Department of Land and Natural Resources, Hawai‘i. Retrieved 26 November 2016.
  39. van Heezik, Yolanda; Smyth, Amber; Mathieu, Renaud (2008). "Diversity of native and exotic birds across an urban gradient in a New Zealand city". Landscape and Urban Planning. 87 (3): 223–232. doi:10.1016/j.landurbplan.2008.06.004.
  40. "Identifying New Zealand Birds". New Zealand Backyard Birds. Retrieved 27 November 2016.
  41. Sears, Stephanie. "Mumbai Leopards: Killers or Victims?". Wildlife Extra News. Retrieved 2013-06-18.
  42. Prajapati, Utkarsh; Koli, Vijay Kumar; Sundar, K.S. Gopi (2021). "Vulnerable sloth bears are attracted to human food waste: a novel situation in Mount Abu town, India". Oryx. 55 (5): 699–707. doi:10.1017/S0030605320000216.
  43. Tiwary, Nawin (2016). "Spatial variations of bird occupancy in Delhi: The significance of woodland habitat patches in urban centres". Urban Forestry & Urban Greening. 20 (1): 338–347. doi:10.1016/j.ufug.2016.10.002.
  44. Rawal, Prakhar; Kittur, Swati; Chatakonda, Murali K.; Sundar, K.S. Gopi (2021). "Winter bird abundance, species richness and functional guild composition at Delhi's ponds: does time of day and wetland extent matter?". Journal of Urban Ecology. 7 (1): 2021, juab001. doi:10.1093/jue/juab001.
  45. "OUWG". Oxford Urban Wildlife Group. Retrieved 2013-06-18.
  46. Kelbie, Paul (2003-05-20). "Gulls adapt to urban life in search for top pickings". The Independent. London. Retrieved 2010-05-27.
  47. "Otters are making themselves at home in UK cities". www.nhm.ac.uk. Retrieved 2022-07-26.
  48. Connor, Steve (2006-12-05). "How city birds adapt to life in the fast lane". The Independent. London. Retrieved 2010-05-27.
  49. Cutraro, Jennifer (4 December 2006). "City Bird, Country Bird". Science. Retrieved 2022-12-16.
  50. Unwin, Brian (2008-02-06). "Peregrine falcon adapting to urban lifestyle". The Daily Telegraph. London. Archived from the original on February 8, 2008. Retrieved 2010-05-27.
  51. Foxes Archived February 24, 2008, at the Wayback Machine
  52. "Fox lived in the Shard skyscraper at London Bridge". BBC News. 2011-02-24.
  53. "Berlin suffers wild boar invasion". BBC News. 2011-05-01.
  54. Williams, Huw (2011-07-12). "My heart's in the High Street a'chasing the deer". BBC News. Retrieved 2013-06-18.
  55. "Thames Marine Mammal Conservation". Zoological Society of London (ZSL). Retrieved 2022-10-17.
  56. "10 of the bugs and insects that will be living in your house this winter". Irish Examiner. 20 November 2015. Retrieved 27 November 2016.
  57. AR Woodward & DN David. "Alligators". The Internet Center for Wildlife Damage Management. Retrieved 27 November 2016.
  58. "American Alligator". The National Wildlife Federation. National Wildlife Federation. Archived from the original on Mar 4, 2022. Retrieved 27 November 2016.
  59. Schramm, Jill (5 October 2017). "Committee to consider urban hunting, ban on feeding wildlife". Minot Daily News. Minot. Retrieved 6 October 2017.
  60. "Sewer creature mystery solved". Wired. July 2009.
  61. Archived March 10, 2009, at the Wayback Machine
  62. 1 2 Davies, Ella (2010-12-28). "Urban marmosets avoid pet threat". BBC News.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.