一百萬邊形

幾何學中,一百萬邊形指有1,000,000條邊和1,000,000個頂點多邊形[1][2]

正一百萬邊形
即使一百萬邊形被画成地球一样大,也很难与圆形区分。
類型正多邊形
對偶正一百萬邊形(本身)
1000000
頂點1000000
對角線499998500000
施萊夫利符號{1000000}
t{500000}
考克斯特符號node_1 1000000 node 
node_1 500000 node_1 
對稱群二面體群 (D1000000), order 2×1000000
面積
內角 o
179.99964°
內角和179999640°
特性圓內接多邊形等邊多邊形等角多邊形等邊圖形

正一百萬邊形

一個正一百萬邊形的每個內角為179.99964°。[1]

一個單位圓的內接正一百萬邊形的周長為:

結果十分接近於。實際上,與地球大小的圓形之圓周(40075公里)相比,它的內接正一百萬邊形的周長与它相差不到1/16毫米[3]

這個形狀對角線有499998500000條。

如同笛卡爾一千邊形的例子,一百萬邊已被用來作為不能被可視化的明確定義的概念的說明。[4][5][6][7][8][9][10]

參考文獻

  1. Darling, David J., The universal book of mathematics: from Abracadabra to Zeno's paradoxes, John Wiley & Sons, 2004. Page 249. ISBN 0-471-27047-4.
  2. Dugopolski, Mark, College Algebra and Trigonometry, 2nd ed, Addison-Wesley, 1999. Page 505. ISBN 0-201-34712-1.
  3. Williamson, Benjamin, An Elementary Treatise on the Differential Calculus, Longmans, Green, and Co., 1899. Page 45.
  4. McCormick, John Francis, Scholastic Metaphysics, Loyola University Press, 1928, p. 18.
  5. Merrill, John Calhoun and Odell, S. Jack, Philosophy and Journalism, Longman, 1983, p. 47, ISBN 0-582-28157-1.
  6. Hospers, John, An Introduction to Philosophical Analysis, 4th ed, Routledge, 1997, p. 56, ISBN 0-415-15792-7.
  7. Mandik, Pete, Key Terms in Philosophy of Mind, Continuum International Publishing Group, 2010, p. 26, ISBN 1-84706-349-7.
  8. Kenny, Anthony, The Rise of Modern Philosophy, Oxford University Press, 2006, p. 124, ISBN 0-19-875277-6.
  9. Balmes, James, Fundamental Philosophy, Vol II, Sadlier and Co., Boston, 1856, p. 27.
  10. Potter, Vincent G., On Understanding Understanding: A Philosophy of Knowledge, 2nd ed, Fordham University Press, 1993, p. 86, ISBN 0-8232-1486-9.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.