二分图最佳带权匹配
定义
一个带权二分图 中的边 都带有一个权值 。该二分图的一个最佳带权匹配是它所有匹配中,所有匹配边权值之和中最大的一个。
参考程序
C++
#include <cstdio>
#include <string.h>
#include <vector>
#include <algorithm>
#include <climits>
using namespace std;
int const MAX = 1000;
int const inf = INT_MAX;
int w[MAX][MAX];
int link[MAX];//代表当前与Y集合中配对的X集合中的点
int visx[MAX], visy[MAX];
int lx[MAX], ly[MAX];
int n, m;//代表X和Y中元素的个数
int can(int t)
{
visx[t] = 1;
for(int i = 1; i <= m; i++){
if(!visy[i] && lx[t] + ly[i] == w[t][i]){//这里“lx[t]+ly[i]==w[t][i]”决定了这是在相等子图中找增广路的前提,非常重要
visy[i] = 1;
if(link[i] == -1 || can(link[i])){
link[i] = t;
return 1;
}
}
}
return 0;
}
int km(void)
{
int sum = 0; memset(ly, 0, sizeof(ly));
for(int i = 1; i <= n; i++){//把各个lx的值都设为当前w[i][j]的最大值
lx[i] = -inf;
for(int j = 1; j <= n; j++){
if(lx[i] < w[i][j])
lx[i] = w[i][j];
}
}
memset(link, -1, sizeof(link));
for(int i = 1; i <= n; i++){
while(1){
memset(visx, 0, sizeof(visx));
memset(visy, 0, sizeof(visy));
if(can(i))//如果它能够形成一条增广路径,那么就break
break;
int d = inf;//否则,后面应该加入新的边,这里应该先计算d值
for(int j = 1; j <= n; j++)//对于搜索过的路径上的XY点,设该路径上的X顶点集为S,Y顶点集为T,对所有在S中的点xi及不在T中的点yj
if(visx[j])
for(int k = 1; k <= m; k++)
if(!visy[k])
d = min(d, lx[j] + ly[k] - w[j][k]);
if(d == inf)
return -1;//找不到可以加入的边,返回失败(即找不到完美匹配)
for (int j = 1; j <= n; j++)
if (visx[j])
lx[j] -= d;
for(int j = 1; j <= m; j++)
if(visy[j])
ly[j] += d;
}
}
for(int i = 1; i <= m; i++)
if(link[i] > -1)
sum += w[link[i]][i];
return sum;
}
参考文献
- 李煜东. . zhong yuan chu ban chuang mei ji tuan - he nan dian zi ying xiang chu ban she. ISBN 978-7-89388-198-5.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.