凱萊公式

图论中,凯莱公式(Cayley formula)计算完全图生成树的总数。若有顶点,生成树的数量是[1][2][3][4][5]

这个定理以阿瑟·凯莱的名字命名。

2、3、4个顶点中的生成树

证明办法

参考文献

  1. Aigner, Martin; Ziegler, Günter M. . Springer-Verlag. 1998: 141–146.
  2. . oeis.org. [2020-02-14]. (原始内容存档于2020-02-16).
  3. Cayley, A. . Quart. J. Pure Appl. Math. 1889, 23: 376–378 [2020-02-14]. (原始内容存档于2017-04-06).
  4. Schützenberger, M. P. . Journal of Combinatorial Theory. 1968, 4: 219–221. MR 0218257.
  5. Takács, Lajos. . Journal of Combinatorial Theory, Series A. March 1990, 53 (2): 321–323. doi:10.1016/0097-3165(90)90064-4.
  6. Borchardt, C. W. . Math. Abh. der Akademie der Wissenschaften zu Berlin. 1860: 1–20.
  7. . www.math.upenn.edu. [2020-02-14]. (原始内容存档于2020-02-14).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.