十边形
在幾何學中,十邊形是指有十條邊和十個頂點的多邊形[1],其內角和為1440度。十邊形有很多種,其中對稱性最高的是正十邊形。其他的十邊形依照其類角的性質可以分成凸十邊形和非凸十邊形,其中凸十邊形代表所有內角角度皆小於180度。非凸十邊形可以在近一步分成凹十邊形和星形十邊形,其中星形十邊形表示邊自我相交的十邊形。
正十邊形 | |
---|---|
一個正十邊形 | |
類型 | 正多邊形 |
對偶 | 正十邊形(本身) |
邊 | 10 |
頂點 | 10 |
對角線 | 35 |
施萊夫利符號 | {10} t{5} |
考克斯特符號 | |
對稱群 | 二面體群 (D10), order 2×10 |
面積 | |
內角(度) | 144° |
內角和 | 1440° |
特性 | 凸、圓內接多邊形、等邊多邊形、等角多邊形、等邊圖形 |
正十邊形
正十邊形是指所有邊等長、所有角等角的十邊形,由十條相同長度的邊和十個相同大小的角構成,是一種正多邊形。正十邊形的內角是弧度,換算成角度是144度[1]。在施萊夫利符號中用 {10} 來表示[2]。由於正十邊形可看作是截去所有頂點的正五邊形,即截角的正五邊形,因此施萊夫利符號中也可以計為 。
扭歪十邊形
{5}#{ } | {5/2}#{ } | {5/3}#{ } |
---|---|---|
正扭歪十邊形是反五角柱、反五角星柱和反交錯五角柱的鋸齒狀側面邊 |
扭歪十邊形,又稱不共面十邊形,是指頂點並非完全共面的十邊形,或具有十條邊和十個頂點的扭歪多邊形。
正十二面體 |
正二十面體 |
截半二十面體 |
菱形三十面體 |
參見
參考文獻
- Sidebotham, Thomas H., , John Wiley & Sons: 146, 2003 [2016-08-27], ISBN 9780471461630, (原始内容存档于2018-02-18).
- Wenninger, Magnus J., , Cambridge University Press: 9, 1974 [2016-08-27], ISBN 9780521098595, (原始内容存档于2016-08-11).
- , Society for Promoting Christian Knowledge: 59, 1850
- Dixon, R. Mathographics. New York: Dover, p. 18, 1991. ISBN 978-0486266398
- Green, Henry, , London: Simpkin, Marshall,& CO.: 116, 1861 [2016-08-27], (原始内容存档于2016-03-05). Retrieved 10 February 2016.
- Köller, Jürgen, , 2005 [2016-08-27], (原始内容存档于2016-08-31). Retrieved 10 February 2016.
外部連結
- 埃里克·韦斯坦因. . MathWorld.
- Definition and properties of a decagon(页面存档备份,存于) With interactive animation
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.