域 (数学)

抽象代数中,德語:英語:)是一种具有加法跟乘法的集合(代数结构),且其加法跟乘法運算就如同普通的有理數還有實數。事實上,正是数域以及四则运算的推廣,所以被廣泛運用在代數、數論等數學領域中。

「域」的各地常用名稱
中国大陸
臺灣

體是的一種。但區別在於域要求它的非零元素可以做除法,且體的乘法有交換律。

最有名的體結構的例子就是有理數體、實數體還有複數體。還有其他形式的體,例如有理函數體、代數函數體、代數數體、p進數體等,都很常在數學的領域中被使用或是研究,特別是數論或是代數幾何。此外還有一些密碼學上的安全協定都是依靠著有限體。

在兩個體中的關係被表示成體擴張的觀念。Galois理論,由ÉvaristeGalois在1830年代提出,致力於理解體擴展的對稱性。其中Galois理論還有其他結果,解決了不能用尺規作圖做出三等份角以及化方為圓的問題。此外,還解決了五次方程不能有公式解的問題。

正式定义

給定集合 ,它具有了以下兩種二元运算

  • (其中 慣例上簡記為
  • (其中 慣例上簡記為 甚至是

滿足:

  1. 交换群,且其單位元為
  2. 交换群
  3. 分配律:對所有

那稱「 為體」,當二元运算的符號不重要時,亦可將 簡記為

慣用符號與稱呼

(1)體的代號:

有時會基於德语 ,以字母 代稱體,但也會基於英语 代稱。

(2)加法與乘法:

習慣上, 被稱為乘法 的單位元會記為 ,並稱為 乘法單位元

類似地, 被稱為加法 被稱為體的加法單位元。所以在省略括弧後,仍依照先乘後加的方式閱讀。

(3)減法與除法:

對於任意 ,會依據群的習慣,將 的加法逆元素記做 ,並將 簡記為 ,並可暱稱為減法

類似地,若 的乘法逆元素記做 ,並將 簡記為 ,並可暱稱為除法

基本性質

定理 (1)   為體,那對任意

證明

根據分配律和加法單位元的性質會有

這樣的話,根據加法結合律還有加法單位元的性質有

故得証。

以上的定理也證明了,只要交换群且有分配律,就足以決定 相關乘法的值。所以正式定義中把 排除在乘法的交換群之外是不會有問題的。也就是說

系理 (乘法交換律)   為體,那對任意

系理 (乘法結合律)   為體,那對任意

定理 (2)   為體,那對任意

證明

根據乘法交換律跟分配律有

這樣根據定理(1)和加法交換律就有

所以

再考慮到乘法的交換律有

故得証。

定理 (3)   為體,若 ,則

證明

根據乘法的結合律和交換律,還有乘法單位元的性質會有

故得証。

定理 (4)   為體,那對任意 ,若 , 則

證明

如果 ,那對任意 都有 ,所以以下只考慮 狀況。

假設存在 滿足 ,但同時 ,這樣根據定理(1)和(3)有

這顯然是矛盾的,所以根據反證法德摩根定理,對所有的 ,只能「 其中一者為 」或「 」,也就等價於:

「對所有 ,若 其中一者為 。」

故得証。

  • F中的所有非零元素的集合(一般记作F×)是一个關於乘法的阿贝尔群F×的每个有限子群都是循环群
  • 若存在正整数n使得0 = 1 + 1 + ... + 1(n个1),那么这样的n中最小的一个称为这个域的特征,特征要么是一个素数p,要么是0(表示这样的n不存在)。此时中最小的子域分别是或有限域,称之为素域
  • 一个交换环是域当且仅当它的理想只有自身和零理想。
  • 选择公理成立的假设下,对每个域F都存在着唯一的一个域G(在同构意义上),G包含FGF代数扩张,并且G代数封闭G称作由F确定的代数闭包。在很多情况下上述的同构并不是唯一的,因此又说GF的一个代数闭包。

例子

  • 許多常见的数域都是域。比如说,全体複數的集合與其加法和乘法构成一个域。全体有理数的集合 與其加法和乘法也是一个域,它是子域,并且不包含更小的子域了。
  • 代数数域:代数数域是有理数域有限扩域,也就是说代数数域是上的有限维向量空间。代数数域都同构于的子域,并且这个同构保持不变,即这个同构把每个有理数都映射到它自身。代数数域是代数数论研究的对象。
  • 代数数构成的域:所有的代数数的集合对于加法和乘法构成一个域,记作是有理数域的代数闭包(见下)。是特征为零的代数封闭的域的一个例子。
  • 全体实数的集合对于加法和乘法构成一个域。实数域是复数域的子域,也是一个有序域。后者使得实数域上能够建立起微积分理论。
  • 所有的实代数数的集合也构成一个域,它是的一个子域
  • 任意一个有限域的元素个数是一个素数q的乘方,一般记作Fq,就是所谓的伽罗瓦域。任意一个元素个数是素数q的域都同构于Z/pZ = {0, 1, ..., p − 1}。令p = 2,就得到最小的域:F2F2只含有两个元素0和1,运算法则如下:
 
0 1
0 0 1
1 1 0
0 1
0 0 0
1 0 1
  • EF是两个域,EF的子域,则FE扩域。设xF中的一个元素,则存在着一个最小的同时包含ExF的子域,记作E (x)E (x)称作EF中关于 x单扩张。比如说,复数域就是实数域中关于虚数单位i的单扩张
  • 每一个有乘法么元的环R都对应着一个包含它的域,称为它的分式域,记作K(R)。分式域的具体构造方法是定义类似于最简分数的等价类,再将环“嵌入”其中(详见分式域)。可以证明,K(R)是包含R的“最小”的域。
  • F是一个域,定义F (X)是所有以F中元素为系数的分式的集合,则F (X)F的一个扩域。F (X)F上的一个无穷维的向量空间,这是域的超越扩张的一个例子。
  • F是一个域,p(X)是多项式环F[X]上的一个不可约多项式,则商环F[X]/<p(X)>是一个域。其中的<p(X)>表示由p(X)生成的理想。举例来说,R[X]/<X2 + 1>是一个域(同构于复数域)。可以证明,F的所有单扩张都同构于此类形式的域。
  • V是域F上的一个代數簇,则所有V → F 的有理函数构成一个域,称为V函数域
  • S是一个黎曼曲面,则全体S → C 亚纯函数构成一个域。
  • 由于序数不是集合,因此在其上定义的尼姆数不能构成真正的域。但它满足域的所有条件,且其任意封闭子集(如小于的所有自然数构成的子集)都是域。

有限體

有限體是一個體有著有限多個元素,其元素個數也跟體的階數相同,按照體的定義,可以知道為最小的有限體,因為根據定義,一個體至少包含兩個元素

通常來說,最簡單的質數階體,就是,此處為質數,在這個體上的加法與乘法等同於在整數上的運算,然後除以,取它的餘數。這個運算精確的建構了一個體,通常我們將這個體記作。要注意的是,當n為合成數時並不是一個有限體,例如在 ,因此 不能形成群。

如果我們將向量空間,則我們將V稱作有限體向量空間,其中,可知這個向量空間中,有個元素。

如果我們將有限體放入矩陣,也就是,則此矩陣的元素有

歷史

歷史上,三個代數中的學科導引到了體的概念:第一個是解多項式方程的問題,第二個是代數數論,第三個則是代數幾何的問題。體的概念始於1770年,由拉格朗日所提出。拉格朗日他觀察到關於三次方程的根x1, x2, x3的置換,在以下的表達

(x1 + ωx2 + ω2x3)3

(其中ω是三次方程的單位根)只產生兩個值。在這方向上,拉格朗日概念上的解釋了由 希皮奧內·德爾·費羅弗朗索瓦·韋達 的經典解法,其解法藉由簡化三次方程關於未知 x 到一個 x3的二次方程。四次方程上也和三次方程一樣有相似的觀察,拉格朗日因此連結的關於體的概念還有群的概念。數學家范德蒙也同樣在1770年有著更全面的延伸。

伽羅瓦理論

請參見伽羅瓦理論

參見

參考文獻

  1. 張幼賢等. . 台北市: 國家教育研究院. 2014: p149 [2019-02-09]. ISBN 9789860440454. (原始内容存档于2020-12-06) (中文(臺灣)).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.