局部紧阿贝尔群
对偶群
若G的局部紧阿贝尔群,则G的特征是G到圆群的连续群同态。G上的特征集可组成局部紧阿贝尔群,称作G的对偶群,记作;其群作用是特征的逐点乘,特征的逆是其复共轭,特征空间的拓扑是紧集上的一致收敛拓扑(即紧致开拓扑,将视作G到的所有连续函数空间的子集)。这种拓扑一般来说是不可度量的,但若G是可分局部紧阿贝尔群,则其对偶群可度量。 这类似于线性代数中的对偶空间:正如对域K上的向量空间V,对偶空间是,对偶群也如此。更抽象地说,它们都是可表函子,分别表为'K、。
同构于对偶群的群(作为拓扑群)自对偶。实数与有限循环群是自对偶的,而实数群与对偶群并不自然同构,应视作两个不同的群。
参考文献
- Clausen, Dustin, , 2017, arXiv:1703.07842v2
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.