平坦擬譜法
平坦擬譜法(flat pseudospectral method)是由Ross和Fahroo提出Ross–Fahroo擬譜法中的一部份[1][2]。此方法結合了微分平坦性[3][4](非線性系統中類似可控制性的概念)以及擬譜最佳控制的概念,在所謂的平坦空間中產生輸出。
概念
因為擬譜法中的微分矩陣為方陣,因此可以用的幂次產生多項式的任意階導數
其中為擬譜變數,而是正整數。 利用微分平坦性,可確定存在函數及,可以使狀態變數及控制變數以下式表示
結合上述概念可以得到平坦擬譜法,將x和u寫成下式
因此最佳控制問題可以轉換為只和擬譜變數Y有關的問題[1]。
相關條目
參考資料
- Ross, I. M. and Fahroo, F., “Pseudospectral Methods for the Optimal Motion Planning of Differentially Flat Systems,” IEEE Transactions on Automatic Control, Vol.49, No.8, pp. 1410–1413, August 2004.
- Ross, I. M. and Fahroo, F., “A Unified Framework for Real-Time Optimal Control,” Proceedings of the IEEE Conference on Decision and Control, Maui, HI, December, 2003.
- Fliess, M., Lévine, J., Martin, Ph., and Rouchon, P., “Flatness and defect of nonlinear systems: Introductory theory and examples,” International Journal of Control, vol. 61, no. 6, pp. 1327–1361, 1995.
- Rathinam, M. and Murray, R. M., “Configuration flatness of Lagrangian systems underactuated by one control” SIAM Journal on Control and Optimization, 36, 164,1998.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.