最小上界性
在数学中,最小上界性 (亦称上确界性,英語:)[1] 是实数集和其他一些有序集的基础属性,与实数的完备性等价[2] 。 集合X具有最小上界性当且仅当X的任意具有上界的非空子集有最小上界 (上确界)。
![](../I/Illustration_of_supremum.svg.png.webp)
任意的有界非空实数集都有一个最小上界。
参考文献
- Bartle and Sherbert (2011) define the "completeness property" and say that it is also called the "supremum property". (p. 39)
- Willard says that an ordered space "X is Dedekind complete if every subset of X having an upper bound has a least upper bound." (pp. 124-5, Problem 17E.)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.