格羅莫夫雙曲空間
數學上,設為一常數,則一個度量空間是格羅莫夫(Gromov)δ-雙曲空間,簡稱δ-雙曲空間,如果中任意四點都符合不等式
其中是對基點的格羅莫夫積。若δ的實際數值不重要時,也可稱作格羅莫夫雙曲空間或雙曲空間。以上是米哈伊爾·格羅莫夫的定義,因為不須用到測地線,故可以用於一般的度量空間。
一個測地度量空間是格羅莫夫雙曲的,當且僅當存在常數,使得每個測地三角形(三邊都是測地線段的三角形)都是δ-瘦,即是三角形每一邊上任何一點,距離另外兩邊其中一邊少於δ。
以上的δ-瘦條件由以利亞·里普斯(Eliyahu Rips)給出,此外又有數種等價條件[1]。格羅莫夫定義中的δ未必等於里普斯條件的δ,但如果一個測地度量空間符合格羅莫夫定義中的δ-雙曲性,則它符合里普斯4δ-瘦條件;反之若這空間符合里普斯δ-瘦條件,則符合格羅莫夫定義的8δ-雙曲性。[1]
例子
理想邊界
設X是一個格羅莫夫雙曲空間,為X中一個序列。如果
- 當時,,
稱收斂於無窮。其中p是X中某個定點,是對基點p的格羅莫夫積。
對收斂於無窮的序列定義一個等價關係如下:,如果
- 當時,。
由這些等價類構成的集合稱為X的理想邊界。
注意上述條件都不依賴於基點p,因為格羅莫夫積對p是1-利普希茨連續的,即是若將p換作另一點q,則任兩點的格羅莫夫積以q為基點時的值,與以p為基點時的值,相差不超過p和q的距離。
若序列在等價類內,那麼稱。這樣就在上定義了一個拓撲,使得X在內是稠密的。
參考
- É. Ghys and P. de la Harpe (éd.), Sur les groupes hyperboliques d'après Mikhael Gromov. Progress in Mathematics, 83. Birkhäuser Boston, Inc., Boston, MA, 1990.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.