泛對角幻方

泛對角幻方(也叫做魔鬼幻方惡魔幻方)是一個具有以下特性的幻方:其破碎對角線(對角線沿著正方形移動而成的線)其所有數字的和也等於幻方的魔數。

泛對角幻方不僅在旋轉鏡射下仍保持泛對角線幻方的特性,而且如果將行或列(或者多行,或者多列)從幻方的一側移到另一側,則仍然保持泛對角線幻方的特性。因此,n階的泛對角線幻方總共有8n2種變化。

3x3的泛對角幻方不存在(除了九個數字都相等的顯然幻方以外),4x4的泛對角幻方的例子如下:

181312
141127
45169
151036

5x5的泛對角幻方的例子為:

20821142
114171023
72513119
31692215
24125186

任何大於3的階數都存在非顯然的泛對角幻方,不過如果一定要用連續整數來填的話,則(4k+2)階的就不存在(其他階數的都存在),如果不用用連續整數,則有以下的六階泛對角幻方的例子:

6333648198
29415151347
40134124320
23142441714
3537321945
38730104916

其最小整數為1,最大整數為49。

外部連結

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.