混合图
定义和标识
考虑一对相邻的顶点 。有向边,是一个有方向的边,其可以表示为 或 (即该有向边为由指向)。[2] 同样地,无向边,是一个没有方向的边,其可以表示为 或 。[2]
在以下给出的应用实例中,我们不考虑混合图中包含自环或多重边的情况。
混合图或混合循环中的循环,是由有向边在混合图中构成的循环。[1]如果不能从有向边形成循环,则认为混合图的方向是无环的。[1]如果一个混合图的所有方向都是无环的,我们称它为有向无环图。[1]
着色
混合图着色可以看作是使用k种不同颜色(其中k是正整数)对混合图顶点进行标记或赋值。[3]通过边连接的两端顶点必须颜色不同。颜色可以由1到k的数字表示,对于有向边,箭头后端的颜色对应数字必须小于箭头前端的颜色对应数字。[3]
实例
例如右图,我们可用于混合图的k着色方式为 。由于 和 之间有边连接,他们必须用不同颜色进行标记(如将 和 分别标记为1和2)。 和之间为有向边连接,因此箭头后端的颜色标记必须小于箭头前段的颜色标记。
应用
调度问题
混合图可用于对车间调度问题进行建模,例如在一定的时间限制下执行一系列任务的问题。在这类问题中,无向边可用于设定两个任务不兼容(不能同时执行)的约束。有向边可用于优先级约束,即其中一个任务必须先于另一个任务执行。用这种方法从调度问题的角度定义的图称为析取图。混合图着色问题可用于规划执行所有任务的最小长度。[2]
注释
- Beck 等人 (2013, p. 1)
- Ries (2007, p. 1)
- Hansen,Kuplinsky & de Werra (1997, p. 1)
- Beck 等人 (2013, p. 4)
- Beck 等人 (2013, p. 5)
参考文献
- Beck, M.; Blado, D.; Crawford, J.; Jean-Louis, T.; Young, M., , Graphs and Combinatorics, 2013, arXiv:1210.4634 , doi:10.1007/s00373-013-1381-1.
- Cowell, Robert G.; Dawid, A. Philip; Lauritzen, Steffen L.; Spiegelhalter, David J., , Springer-Verlag New York: 27, 1999 [2019-05-21], ISBN 0-387-98767-3, doi:10.1007/0-387-22630-3, (原始内容存档于2020-06-12)
- Hansen, Pierre; Kuplinsky, Julio; de Werra, Dominique, , Mathematical Methods of Operations Research, 1997, 45 (1): 145–160, MR 1435900, doi:10.1007/BF01194253.
- Ries, B., , Discrete Applied Mathematics, 2007, 155 (1): 1–6, MR 2281351, doi:10.1016/j.dam.2006.05.004.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.