向量空间

向量空間是一群可縮放相加的數學實體(如實數甚至是函数)所構成的特殊集合,其特殊之處在於縮放和相加後仍屬於這個集合。這些數學實體被稱為向量,而向量空間正是線性代數的主要研究对象。

向量空間是可以縮放和相加的(叫做向量的)對象的集合

正式定義

給定 和某集合 ,它們具有了以下兩種运算函数):[1]

  • 向量加法 (其中 慣例上簡記為
  • 标量乘法 (其中 慣例上簡記為 甚至是

且這兩種運算滿足:(特別注意 是本身具有的加法和乘法)

名稱 前提條件內容
向量加法 单位元逆元素 存在 的元素 對所有
且存在 使得
结合律 對所有
交换律 對所有
标量乘法 单位元 對所有 乘法单位元,則
对向量加法的分配律 對所有 和所有
对域加法的分配律 對所有 和所有
与域乘法

這樣稱 「 為定義在 上的向量空間」,而 裡的元素 被稱為向量;域 裡的元素 被稱為标量。這樣域 就是囊括所有标量的集合,所以為了解說方便,有時會將 暱稱為标量域或是标量母空間。在不跟域的加法混淆的情況下,向量加法 也可以簡寫成

前四個條件規定 交換群。上述的完整定義也可以抽象地概述成「 是個域,且 是一個 」。

基本性质

以下定理都沿用正式定義一節的符號與前提條件。

定理 (1)  向量加法的單位元是唯一的。

以上的定理事實上繼承自群的單位元唯一性。這樣的話,可以仿造群的習慣以記號 代表「向量加法 的唯一單位元」,並稱之為 零向量

在不跟标量的加法單位元 混淆的情況下,零向量 也可以簡寫成

定理 (2)  任意向量的向量加法逆元素是唯一的。

以上的定理事實上繼承自群的逆元唯一性,這樣的話,可以仿造群的習慣以 代表「向量 在向量加法 下的唯一逆元素」,甚至可以把 簡記為 ,並暱稱為向量減法。在不跟标量的加法混淆的情況下, 也可記為 也可記為

定理 (3)  對所有的純量 都有 。(零向量的伸縮還是零向量)

證明

考慮到标量乘法对向量加法的分配律零向量的性質會有

那取向量 的向量加法逆元素,配上向量加法的结合律单位元的定義會有

故得証。

定理 (4)  對所有的向量 ,若純量 是域加法的单位元,則

證明

考慮到 自身的定義,還有标量乘法对域加法的分配律的話有

那取向量 的向量加法逆元素,配上向量加法的结合律单位元的定義會有

故得証。

定理 (5)  對所有的向量 和标量 ,如果 ,则 ( 其中 是域加法的单位元)。

證明

,根據定理(3)本定理顯然成立。下面只考慮 的狀況。

假設存在向量 和标量 滿足 ,但 。若以 表示域的乘法單位元,那根據其性質與和定義關於标量乘法單位元的部分會有

那再根據定義關於标量乘法与域乘法的部分,還有域乘法的交換律會有

那再套用定理(3)和前提假設會有

這跟前提假設是矛盾的,所以根據反證法德摩根定理,對所有向量 和所有标量 ,只有可能「 」或「」,但這段敘述正好等價於定理想證明的,故得証。

定理 (6)  如果 的域加法逆元素,那對所有的向量 的向量加法逆元素必為

證明

以下設純量 是域加法的单位元

考慮到 自身的定義,還有标量乘法对域加法的分配律會有

然後考慮到前面的定理(4),就有

然後考慮到定理(2)保證的逆元素唯一性,就可以知道向量 的加法逆元素必為

系理  如果 是域加法單位元 的域加法逆元素,那對所有的向量 ,其向量加法逆元素必為

額外結構

研究向量空間很自然涉及一些額外結構。額外結構如下:

  • 一個實數或複數向量空間加上長度概念(就是範數)則成為賦範向量空間
  • 一個實數或複數向量空間加上長度和角度的概念則成為內積空間
  • 一個向量空間加上拓撲結構并滿足連續性要求(加法及標量乘法是連續映射)則成為拓撲向量空間
  • 一個向量空間加上雙線性算子(定義為向量乘法)則成為域代數

例子

對一般域FV记為F-向量空間。若F實數域,则V稱為實數向量空間;若F複數域,则V稱為複數向量空間;若F有限域,则V稱為有限域向量空間

最简单的F-向量空間是F自身。只要定义向量加法为域中元素的加法,标量乘法为域中元素的乘法就可以了。例如当F是实数域时,可以验证对任意实数ab以及任意实数uvw,都有:

  1. u + (v + w) = (u + v) + w
  2. v + w = w + v
  3. 零元素存在:零元素0满足:对任何的向量元素vv + 0 = v
  4. 逆元素存在:对任何的向量元素v,它的相反数w = v就满足v + w = 0
  5. 标量乘法对向量加法满足分配律a(v + w) = a v + a w.
  6. 向量乘法对标量加法满足分配律(a + b)v = a v + b v.
  7. 标量乘法与标量的域乘法相容:a(bv) =(ab)v
  8. 标量乘法有單位元中的乘法单位元,也就是实数“1”满足:对任意实数v1v = v

更为常见的例子是给定了直角坐标系的平面:平面上的每一点都有一个坐标,并对应着一个向量。所有普通意义上的平面向量组成了一个空间,记作ℝ²,因为每个向量都可以表示为两个实数构成的有序数组。可以验证,对于普通意义上的向量加法和标量乘法,ℝ²满足向量空间的所有公理。实际上,向量空间是ℝ²的推广。

同样地,高维的欧几里得空间n也是向量空间的例子。其中的向量表示为,其中的都是实数。定义向量的加法和标量乘法是:

可以验证这也是一个向量空间。

再考虑所有系数为实数的多项式的集合。对于通常意义上的多项式加法和标量乘法,也构成一个向量空间。更广泛地,所有从实数域射到实数域的连续函数的集合也是向量空间,因为两个连续函数的和或差以及连续函数的若干倍都还是连续函数。

方程组与向量空间

向量空间的另一种例子是齐次线性方程组(常数项都是0的线性方程组)的解的集合。例如下面的方程组:

如果都是解,那么可以验证它们的“和”也是一组解,因为:

同样,将一组解乘以一个常数后,仍然会是一组解。可以验证这样定义的“向量加法”和“标量乘法”满足向量空间的公理,因此这个方程组的所有解组成了一个向量空间。

一般来说,当齐次线性方程组中未知数个数大于方程的个数时,方程组有无限多组解,并且这些解组成一个向量空间。

对于齐次线性微分方程,解的集合也构成向量空间。比如说下面的方程:

出于和上面类似的理由,方程的两个解的和函数也满足方程。可以验证,这个方程的所有解构成一个向量空间。

子空間基底

如果一個向量空間V的一個非空子集合W对于V的加法及標量乘法都封闭(也就是说任意W中的元素相加或者和标量相乘之后仍然在W之中),那么将W称为V線性子空間(简称子空间)。V的子空间中,最平凡的就是空間V自己,以及只包含0的子空间

給出一個向量集合B,那么包含它的最小子空間就稱為它的生成子空間,也称線性包络,记作span(B)。

給出一個向量集合B,若它的生成子空间就是向量空間V,则稱BV的一个生成集。如果一个向量空間V拥有一个元素个数有限的生成集,那么就稱V是一个有限维空间。

可以生成一個向量空間V線性獨立子集,稱為這個空間的。若V={0},约定唯一的基是空集。對非零向量空間V,基是V“最小”的生成集。向量空间的基是对向量空间的一种刻画。确定了向量空间的一组基B之后,空間內的每個向量都有唯一的方法表達成基中元素的線性組合。如果能够把基中元素按下标排列:,那么空间中的每一个向量v便可以通过座標系統來呈現:

这种表示方式必然存在,而且是唯一的。也就是说,向量空间的基提供了一个坐标系。

可以证明,一个向量空間的所有基都擁有相同基數,稱為該空間的維度。当V是一个有限维空间时,任何一组基中的元素个数都是定值,等于空间的维度。例如,各种實數向量空間:ℝ⁰, ℝ¹, ℝ², ℝ³,…, ℝ,…中, ℝn的維度就是n。在一个有限维的向量空间(维度是n)中,确定一组基,那么所有的向量都可以用n个标量来表示。比如说,如果某个向量v表示为:

那么v可以用数组来表示。这种表示方式称为向量的坐标表示。按照这种表示方法,基中元素表示为:

可以证明,存在从任意一个n维的-向量空间到空间双射。这种关系称为同构。

線性映射

給定兩個系数域都是F的向量空間V和W,定义由V到W的線性變換(或称线性映射)为所有从V射到W并且它保持向量加法和标量乘法的运算的函数f

所有线性变换的集合记为,这也是一个系数域为F的向量空间。在确定了V和W上各自的一组基之后,中的线性变换可以通过矩阵来表示。

如果两个向量空間V和W之间的一个線性映射是一一映射,那么这个线性映射称为(线性)同构,表示两个空间构造相同的意思。如果在V和W之間存在同構,那么稱這兩個空間為同構的。如果向量空間V和W之间存在同构,那么其逆映射也存在,并且对所有的,都有:

參考文獻

  • 中国大百科全书
  • Howard Anton and Chris Rorres. Elementary Linear Algebra, Wiley, 9th edition, ISBN 0-471-66959-8.
  • Kenneth Hoffmann and Ray Kunze. Linear Algebra, Prentice Hall, ISBN 0-13-536797-2.
  • Seymour Lipschutz and Marc Lipson. Schaum's Outline of Linear Algebra, McGraw-Hill, 3rd edition, ISBN 0-07-136200-2.
  • Gregory H. Moore. The axiomatization of linear algebra: 1875-1940, Historia Mathematica 22 (1995), no. 3, 262-303.
  • Gilbert Strang. "Introduction to Linear Algebra, Third Edition", Wellesley-Cambridge Press, ISBN 0-9614088-9-8

參考資料

  1. Roman 2005,ch. 1, p. 27
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.