纳米网络

纳米网络是由一组几百纳米至几微米级的纳米机器连接而成的网络。它们能够执行如计算数据储存检测以及驱动等非常简单的任务。主要应用在生物医学、环境研究、军事技术等领域。[1][2]纳米网络的通信协议是在IEEE P1906.1中定义的。

通信方法

电磁

新型纳米材料可以传输和接收电磁辐射[3]。新一代纳米电子组件有纳米电池[4]、纳米能量收集系统[5] 、纳米存储器[6]、纳米逻辑电路、纳米天线等。[7][8]

分子

借助分子也可以实现信息的传输和接收,有行径、流动和扩散等三种方式。

  • 基于流动的通信方式如荷尔蒙通过血液实现在人体内的传播、费洛蒙长程分子通信等。[11]
  • 基于扩散的通信方式如输送钙信号的细胞 [12],以及群体感应中的细菌等。[13]

参考文献

  1. J. M. Jornet and M. Pierobon. 54: 84–89. 2011-11 [2018-02-08]. doi:10.1145/2018396.2018417. (原始内容存档于2011-10-31).
  2. Nanoscale Communication Networks, Bush, S. F., ISBN 978-1-60807-003-9, Artech House, 2010.
  3. C. Rutherglen and P. J. Burke "Nano-Electromagnetics: Circuit and Electromagnetic Properties of Carbon Nanotubes," Small, 5(8), 884–906 (2009)
  4. A. E. Curtright, P. J. Bouwman, R. C. Wartane and K. E. Swider-Lyons, "Power Sources for Nanotechnology," International Journal of Nanotechnology, Vol. 1, pp. 226–239, 2004.
  5. Z. L. Wang, "Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics," Advanced Functional Materials, Vol. 18, pp. 3553–3567, 2008.
  6. Bennewitz, R.; Crain, J. N.; Kirakosian, A.; Lin, J.-L.; McChesney, J. L.; Petrovykh, D. Y. & Himpsel, F. J. Atomic scale memory at a silicon surface Nanotechnology, Vol. 13, pp. 499–502, 2002.
  7. Peter J. Burke, Shengdong Li, Zhen Yu "Quantitative theory of nanowire and nanotube antenna performance," IEEE Transactions on Nanotechnology Vol. 5 n. 4, pp. 314–334, 2006.
  8. Peter J. Burke, Chris Rutherglen, and Zhen Yu, "Carbon Nanotube Antennas," in Proc. SPIE Int. Soc. Opt. Eng. 6328, 632806-1, 2006 .
  9. M. Moore, A. Enomoto, T. Nakano, R. Egashira, T. Suda, A. Kayasuga, H. Kojima, H. Sakakibara, and K. Oiwa, "A Design of a Molecular Communication System for Nanomachines Using Molecular Motors," in Proc. Fourth Annual IEEE Conference on Pervasive Computing and Communications and Workshops, March 2006
  10. M. Gregori and Ian F. Akyildiz, "A New NanoNetwork Architecture using Flagellated Bacteria and Catalytic Nanomotors," IEEE JSAC (Journal of Selected Areas in Communications), Vol. 28, No. 4, pp. 612–619, May 2010.
  11. L. Parcerisa and Ian F. Akyildiz, "Molecular Communication Options for Long Range Nanonetworks," Computer Networks Journal (Elsevier), Vol. 53, No. 16, pp. 2753–2766, November 2009.
  12. M. T. Barros. "Ca2+-signaling-based molecular communication systems: design and future research directions". Elsevier Nano Communication Networks. vol 11, pp 103–113. 2017.
  13. "The challenge of molecular communication", Technology Review (Physics arXiv blog), 28 June 2010. 页面存档备份,存于
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.