莫德尔猜想

莫德爾猜想(Mordell conjecture),又稱法爾廷斯定理(Faltings's theorem),是一個由路易·莫德爾[1]提出的算術幾何猜想,這猜想認為,任何有理數域上虧格數大於一的曲線至多只有有限多個有理點。這猜想於1983年為格尔德·法尔廷斯所證明[2],並從此改名為法爾廷斯定理,而之後這猜想被推廣至任何代數數域上。

法爾廷斯定理
格尔德·法尔廷斯
領域算術幾何
猜想提出者路易·莫德爾
猜想提出年1922
最初證明者格尔德·法尔廷斯
最初證明年1983
推廣邦別里-朗猜想
莫德爾-朗猜想
可得結果西葛爾的整數點定理

背景

C為一個非特異的、位於有理數域上且虧格數為g的代數曲線,則C上的有理點可由下列關係決定:

  • g = 0時,C要不沒有有理點,要不有無限多的有理點,此情況下C可視為圓錐曲線
  • g = 1時,C沒有有理點,或者為一個有理點構成有限生成阿貝爾群橢圓曲線(此即莫德爾定理,之後被推廣為莫德爾-韋伊定理);此外,馬祖爾撓定理對相關的撓子群的結構做出限制。
  • g > 1時,根據現在又稱法爾廷斯定理的莫德爾猜想,C只有有限多的有理點。

證明

伊戈尔·沙法列维奇曾猜想說在一個固定的數域上有著固定的維度與極化度(polarization degree)、且在固定的構成的有限集合之外有著良好簡化(Good reduction)的交換簇之上,只有有限個同構類,而這即是沙法列维奇的有限猜想。[3]阿列克謝·帕辛使用現在稱為帕辛技巧的方法,指出說沙法列维奇的有限猜想可推出莫德爾猜想。[4]

格尔德·法尔廷斯利用了泰特猜想一個情況已知的簡化,以及包括內倫模型等源自代數幾何的工具,證明了沙法列维奇的有限猜想。[5]而這證明的主要想法,是利用西葛爾模簇來比較高度函數中的法爾廷斯高度及古典高度。[lower-alpha 1]

後來的證明

  • 保羅·波伊大給出一個基於丟番圖逼近的證明;[6]之後恩里科·邦別里找到了波伊大的證明中一個更加初等的版本。[7]
  • 布萊恩·勞倫斯(Brian Lawrence)及阿克沙伊·文卡泰什給出一個基於p進數霍奇定理的證明,而這證明借鑿了法爾廷斯原始證明中一些較簡單的成分。[8]

可得結果

法爾廷斯在1983年的論文可推出一系列先前受猜想的內容:

  • 莫德爾猜想,也就是在代數數域上虧格數大於1的曲線只有有限多個有理點;
  • 同類定理(Isogeny theorem),也就是帶有同構泰特模(也就是帶有伽羅瓦作用的Q-模)的交換簇同類的。

法爾廷斯定裡的一個應用是費馬最後定理的弱形式:對於任意大於等於4的固定整數nan + bn = cn至多只有有限的原始整數解(也就是彼此互質的解),而這是因為對於這樣的n而言,費馬曲線 xn + yn = 1的虧格數大於1之故。

推廣

由於莫德爾-韋伊定理之故,因此法爾廷斯定理可重述為一個關於帶有交換簇A的有限生成子群Γ的曲線C的交點的敘述,因此可透過將其中交換簇A改成半交換簇(semiabelian variety)、將C改成A的任意子簇,以及將Γ改成A的任意有限秩子集的作法,將之推廣為莫德爾-朗猜想,而這猜想由麥克·麥奎蘭[9]在洛朗(Laurent)、雷诺、辛追(Hindry)、波伊大以及法爾廷斯等人成就的基礎上,於1995年所證明。

法爾廷斯定理的另一個高維推廣是邦別里-朗猜想,也就是若X是一個在數域k上的偽典型簇(也就是「一般類型」的代數簇),那麼X(k)在扎里斯基拓扑的意義上並非稠密的。保羅·波伊大並提出了更加一般化的猜想。

函數域上的莫德爾猜想由尤里·马宁[10]以及漢斯·格勞爾特[11]所證明,在1990年,罗伯特·F·科尔曼找到並修補了马宁證明中的一個漏洞。[12]

註解

  1. 「法爾廷斯藉由西葛爾模空間的方法比較了高度的兩種表記…這是證明的主要想法」(原文:"Faltings relates the two notions of height by means of the Siegel moduli space.... It is the main idea of the proof.")Bloch, Spencer. . The Mathematical Intelligencer. 1984, 6 (2): 44. S2CID 306251. doi:10.1007/BF03024155.

引用

參考資料

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.