迭代函数

数学中,迭代函数[1]是在碎形动力系统中深入研究的对象。迭代函数是重复的与自身复合的函数,这个过程叫做迭代

定义

集合 上的迭代函数的形式定义为:

是集合和 函数。定义 次迭代 ,这里的 是在 上的恒等函数

在上述中, 指示函数复合;就是说

換句話說,迭代函数也可以表示為以下的形式:

定義為

定義為反函數。(如果的反函數不存在,則也不存在)

因此,就是是恆等函數的反函數(如果存在的話),而就是能夠使得合成函數正好是的函數

注意,一般情況下,並不等於,而例如的反函數,亦即,而不是

一些特殊函數的冪次為(其中可為任意複數,亦即):

(在是負實數或虛數的時候並沒有定義,就好比是負實數或虛數的時候也沒有定義)

(注意迭代冪次要由右往左算)

(注意任何非零複數的任何複數次方都有定義:,當為負實數或虛數時,,其中為複數絕對值為複數主幅角為複數實部為複數虛部

函數冪亦有類似指數律的定理,其中可為任意複數,亦即

注意函數的合成是不可交換的(並不一定等於)但因為可結合(一定等於),所以會符合冪結合性,因此這兩條「函數冪的指數律」並沒有任何問題。

這跟例如指數拓展到次方為負整數、分數、無理數、複數,以及階乘運算跟排列組合運算拓展到非整數和負數時(使用伽瑪函數)一樣,二項式定理也可以用這種方式拓展到負整數、分數、無理數、複數,只是會變成無窮級數而不再是有限級數而已,包括矩陣次方以及微分次(為負整數時等同於積分次),也都可以用這種方式,把拓展到任意複數,或例如已知「首項」、「公差/公比」、「項數」的等差數列等比數列要求出全部項的和或乘積的公式,也都可以用這種方式,拓展到項數為負整數、分數、無理數、複數的情況(包括一般的中,為常見的函數如多項式函數指數函數對數函數三角函數的時候,也能拓展到任意複數,就跟積分式一樣),至於超運算能不能拓展到分數、無理數或複數,則是數學中未解決的問題之一。

从迭代建立序列

函数 的序列叫做 Picard 序列,得名于埃米尔·皮卡。对于一个给定 的值的序列叫做 轨道

如果对于某个整数 ,则轨道叫做周期轨道。对于给定 最小的这种 值叫做轨道的周期。点 自身叫周期点

不动点

如果m=1,就是说如果对于某个X中的xf(x) = x,则x被称为迭代序列的不动点。不动点的集合经常指示为Fixf)。存在一些不动点定理保证在各种情况下不动点的存在性,包括巴拿赫不动点定理Brouwer不动点定理

有很多技术通过不动点迭代产生了序列收敛加速。例如,应用于一个迭代不动点的Aitken方法叫做Steffensen方法,生成二次收敛。 不动点理论同样也适用于经济学领域。

极限行为

通过迭代,可以发现有向一个单一点收缩和会聚的一个集合。在这种情况下,会聚到的这个点叫做吸引不动点。反过来说,迭代也可以表现得从一个单一点发散;这种情况叫不稳定不动点

当轨道的点会聚于一个或多个极限的时候,轨道的会聚点的集合叫做极限集合ω-极限集合

吸引和排斥的想法类似推广;依据在迭代下小邻域行为,可把迭代分类为稳定集合不稳定集合

其他极限行为也有可能;比如,游荡点是总是移动永不回到甚至接近起点的点。

例子

著名的迭代函数包括曼德博集合迭代函数系统

如果 f 是一个群元素在一个集合上的作用,则迭代函数对应于自由群

参见

  • 旋转数
  • Sarkovskii定理

引用

  1. . 國家教育研究院辭書資訊網. [2021-11-07]. (原始内容存档于2021-11-08). 名詞解釋:指重複的一序列指令或事件;如程式的迴圈。
  • Vasile I. Istratescu, Fixed Point Theory, An Introduction, D.Reidel, Holland (1981). ISBN 90-277-1224-7
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.