泥盆纪
泥盆纪(英語:,符號D)是地球地质历史中显生宙古生代中的第四个纪,开始于4.19亿年前(同位素年龄419.2 Ma),结束于3.59亿年前(358.9 Ma),上承志留纪,下启石炭纪。因为泥盆纪是水生脊椎动物——特别是各种有颌鱼类——开始繁荣并压倒泛节肢动物和软体动物占据水域环境中优势生态位的时期,因此也被古生物学家称为鱼类时代。
泥盆纪 419.2–358.9百万年前 | |
晚泥盆世地图 | |
全時期平均大氣O 2含量 |
约15 Vol %[1] (为現代的75% ) |
全時期平均大氣CO 2含量 |
约2200 ppm[2] (为前工業時期8倍) |
全時期平均地表溫度 | 约20℃[3] (高於現代6℃) |
海平面(高於現代) | 一般穩定於189米,逐漸下降至120米[4] |
直轴:百万年前
從古地理學的角度上來看,泥盆紀的地理环境主要由南方的岡瓦那大陸與北方的西伯利亞大陸两个超大陸組成,之間則有古特提斯洋與剛形成的歐美大陸。此期间的全球气候温暖干燥,极地与赤道的温差小于今天。
泥盆纪在英语中的名称“Devonian”来自于该时期地层被最早研究的英国德文郡,其他语言的称呼与英文大同小异。中文名称源自旧时日本人使用汉字音读的音译名“”(音讀:,羅馬字:dēbonki)。
研究历史
泥盆纪在19世纪通常被称为“温室时代”或“蕨类植物时代”。这些称呼来自当时欧洲地质学家的偏见,他们的研究集中在泥盆纪期间靠近赤道的地区,而世界其他地区的气候较冷。在1830年之前,地质学界认为石炭纪直接跟随志留纪时期。但是这种时间顺序是在发现志留纪时期的地质层中存在煤之后提出的。泥盆纪作为地质时期的确立是一场重大争论的高潮,这场争论发生于1830年–1837年左右。最终英国地质学家莫企逊与亚当·塞奇威克在1839年共同确定了泥盆纪[8]。
主要分界
泥盆紀時期被正式劃分為早泥盆世、中泥盆世與晚泥盆世。與這些時代相對應的巖石被稱為屬於泥盆紀系統的下部、中部和上部三部分。
早泥盆世
泥盆紀早期從同位素年齡419.2±2.8百萬年(Ma)持續至393.3±2.5百萬年(Ma),始於洛赫考夫期(419.2±2.8 - 410.8±2.5),隨後是布拉格期(410.8±2.8 - 407.6±2.5),然後是埃姆斯期,這個時期一直持續至中泥盆世起始的393.3±2.7百萬年前[9] 。在這段時間裏,第一批菊石出現了,由桿石目類鸚鵡螺進化而來。這一時期的菊石構造很簡單,與它們的同類鸚鵡螺相差不大。這些菊石屬於無角菊石目,在後期又演化為新的菊石目,如棱菊石目和海神石目。在中生代開始之前,這類頭足類軟體動物在海洋動物群系中占主導地位。
中泥盆世
中泥盆世包括兩個分支:首先是艾菲爾期,然後在387.7±2.7百萬年前過渡至吉維特期。在此期間,淡水和海洋環境中的無頜魚多樣性開始下降,部分原因是劇烈的環境變化,另外也由於競爭、受到捕食以及有頜魚多樣性的上升。泥盆紀內陸湖泊中淺水、溫暖、缺氧的水域被原始的植物所包圍,並為某些早期的魚類提供必要的環境,使其具備發育良好的肺等基本特征,並能在短時間內從水中爬出並爬上陸地[10]。
晚泥盆世
晚泥盆世開始於弗拉斯期(382.7±2.8 - 372.2±2.5),在此期間,最早的陸地森林形成。隨後是法門期,最早的四足動物出現在這個階段的化石記錄中,法門期的開始和結束都以滅絕事件為標誌。這一現象一直持續到泥盆紀末期(3.589±2.5百萬年前)。
古生物
泥盆纪产生了第一次陆地上的辐射适应,使生物遍布了陆地和淡水的几乎大部分区域。
植物
石松門与链束植物门的植物在陸地上遍布,在各地形成茂密的森林。到了泥盆紀中期時,部分植物已經演化出葉片與根。在泥盆紀晚期時,則出現以種子進行繁殖的種子蕨門。當時最高的生物組織為高度 8.8(29英尺) 的真菌原杉菌[11]。
图库
早泥盆世
- 耶克尔鲎(Jaekelopterus)体长2.5米,是史上最大节肢动物,淡水的王者,发现于美国怀俄明州
- 申德汉斯虾(Drepanaspis),最后的恐虾纲,发现于洪斯吕克板岩生物群
- Terataspis,体型可达60厘米,属于裂肋虫目,是已知体型第三大的三叶虫,其型态相比其他大型三叶虫非常夸张
泥盆紀後期滅絕事件
第一次嚴重的滅絕事件標誌著泥盆紀最後一個時期法门期的開始,大約是372.2百萬年前。第二次嚴重的滅絕事件則終結了泥盆紀時期。泥盆紀後期滅絕事件是地球生物史上五次主要的大規模物種滅絕事件之一,滅絕比例比著名的白垩纪-第三纪灭绝事件還高。
泥盆紀後期滅絕事件主要影響海洋生物,尤其是生活在溫暖淺海的物種。包括腕足动物门、三葉蟲綱、菊石亚纲、牙形石綱、無頜總綱和疑源类,以及所有的盾皮魚綱。然而,陸地與淡水生物,包括四足類的祖先,則相對受到較小的影響。
参考文献
- http://uahost.uantwerpen.be/funmorph/raoul/fylsyst/Berner2006.pdf
- Image:Phanerozoic Carbon Dioxide.png
- Image:All palaeotemps.png
- Haq, B. U.; Schutter, SR. . Science. 2008, 322 (5898): 64–68. Bibcode:2008Sci...322...64H. PMID 18832639. doi:10.1126/science.1161648.
- Parry, S. F.; Noble, S. R.; Crowley, Q. G.; Wellman, C. H. . Journal of the Geological Society (London: Geological Society). 2011, 168 (4): 863–872. doi:10.1144/0016-76492010-043.
- Kaufmann, B.; Trapp, E.; Mezger, K. . The Journal of Geology. 2004, 112 (4): 495–501. Bibcode:2004JG....112..495K. doi:10.1086/421077.
- Algeo, T. J. . Philosophical Transactions of the Royal Society B: Biological Sciences. 1998, 353 (1365): 113–130. doi:10.1098/rstb.1998.0195.
- . [2020-06-03]. (原始内容存档于2010-07-18).
- Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.-X. (PDF). Episodes. 2013, 36 (3): 199–204 [7 January 2021]. doi:10.18814/epiiugs/2013/v36i3/002 . (原始内容 (PDF)存档于2022-03-19).
- Clack, Jennifer. . Integrative and Comparative Biology. 13 August 2007, 47 (4): 510–523 [2022-02-28]. PMID 21672860. doi:10.1093/icb/icm055 . (原始内容存档于2022-06-09).
Estimates of oxygen levels during this period suggest that they were unprecedentedly low during the Givetian and Frasnian periods. At the same time, plant diversification was at its most rapid, changing the character of the landscape and contributing, via soils, soluble nutrients, and decaying plant matter, to anoxia in all water systems. The co-occurrence of these global events may explain the evolution of air-breathing adaptations in at least two lobe-finned groups, contributing directly to the rise of the tetrapod stem group.
- Boyce, K.C.; Hotton, C.L.; Fogel, M.L.; Cody, G.D.; Hazen, R.M.; Knoll, A.H.; Hueber, F.M. (PDF). Geology. May 2007, 35 (5): 399–402 [2019-03-26]. Bibcode:2007Geo....35..399B. doi:10.1130/G23384A.1. (原始内容存档 (PDF)于2011-09-28).
- Amos, Jonathan. . news.bbc.co.uk. BBC News. [2016年12月24日]. (原始内容存档于2018年8月24日).
- George r. Mcghee, Jr. . Columbia University Press. 12 November 2013 [2016-03-01]. ISBN 9780231160575. (原始内容存档于2019-12-27).
- . [2014-05-31]. (原始内容存档于2013-12-12).
- MURPHY A. E., SAGEMAN B. B., HOLLANDER D. J., "Eutrophication by decoupling of the marine biogeochemical cycles of C, N, and P: A mechanism for the Late Devonian mass extinction." Geology, 2000, 28, 5, 427-430.
- JOACHIMSKI M. M., BUGGISCH W., "Conodont apatite δ18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction." Geology, 2002, 30, 8, 711-714.