Santa Teresa Formation
Stratigraphic range: Late Oligocene (Deseadan)
~
TypeGeological formation
Underliesalluvium
OverliesSan Juan de Río Seco Formation
ThicknessType section: 118 m (387 ft)
Maximum: 150 m (490 ft)
Lithology
PrimaryClaystone
OtherSiltstone, calcareous sandstone
Location
Coordinates4°50′55″N 74°37′14″W / 4.84861°N 74.62056°W / 4.84861; -74.62056
Country Colombia
ExtentWestern Eastern Ranges, Andes
Southern Middle Magdalena Valley
Type section
Named forVereda Santa Teresa
Named byDe Porta
LocationSan Juan de Rioseco
Year defined1966
Coordinates4°50′55″N 74°37′14″W / 4.84861°N 74.62056°W / 4.84861; -74.62056
RegionCundinamarca
Country Colombia
Thickness at type section118 m (387 ft)

Paleogeography of Northern South America
35 Ma, by Ron Blakey

The Santa Teresa Formation (Spanish: Formación Santa Teresa, Tist, Pgst) is a geological formation of the western Eastern Ranges of the Colombian Andes, west of the Bituima Fault, and the southern Middle Magdalena Valley. The formation spreads across the western part of Cundinamarca and the northern portion of Tolima. The formation consists of grey claystones intercalated by orange quartz siltstones and sandstones of small to conglomeratic grain size. The thickness at its type section has been measured to be 118 metres (387 ft) and a maximum thickness of 150 metres (490 ft) suggested.

In the formation, dated on the basis of its fossil content to the Late Oligocene, many leaf imprints and mollusks were found, suggesting a lacustrine to deltaic depositional environment with periodical marine incursions.

Etymology

The formation was defined by De Porta in 1966 and named after the vereda Santa Teresa, San Juan de Rioseco.[1]

Description

Santa Teresa Formation, Colombia is located in Cundinamarca Department
Santa Teresa Formation, Colombia
Type locality of the Santa Teresa Formation in Cundinamarca

The Santa Teresa Formation is the youngest unit outcropping in the Jerusalén-Guaduas synclinal, western Eastern Ranges, covering the San Juan de Río Seco Formation. The formation was formerly called La Cira Formation. In the Balú quebrada, the formation shows a thickness of 118 metres (387 ft), while the maximum thickness could reach 150 metres (490 ft).[1]

The lower boundary of the formation is marked by the first occurrence of grey claystones, covering the light brown claystones of the San Juan de Río Seco Formation. The formation comprises grey claystones intercalated by orange quartz siltstones and sandstones of small to conglomeratic grain size. The roundness of the sandstone grains has been characterized as angular to subangular by Lamus Ochoa et al. in 2013.[2] The claystones occur in thick layers with wavy lamination.[1]

In these thick packages of claystones, the formation has provided fossil leaves in various forms and sizes, and to a lesser extent the remains of mollusks; gastropods and bivalves. The basal contacts of these beds are straight to transitional and most of the time are coarsening upward towards quartz arenites where the gastropods dominate. These facies sequences have a thickness of about 2 metres (6.6 ft). Locally, bioturbation, siderite nodules and coal beds occur in the formation. The sandstones occur in very thin to very thick beds, characterized by plain parallel lamination, in lenses and very locally in flasers. The cement of the arenites is calcareous.[1] The grain composition of the lithic fraction comprises zircon,[3] epidote, zoisite, clinozoisite and pyroxenes, which at the top of the formation amounts to 86 percent.[4]

Stratigraphy and depositional environment

The Santa Teresa Formation conformably overlies the San Juan de Río Seco Formation and is covered by subrecent alluvium.[1] The formation is part of the sequence after the Eocene unconformity.[5]

The age has been inferred to be Late Oligocene. The depositional environment has been interpreted as lacustrine with marine influence in the form of channels. The abundance of brackish and fresh water gastropods suggests these environmental conditions prevailed in the Oligocene of central Colombia.[1]

In the type section at the Balú quebrada, facies traits that confirm this interpretation can be observed. The lacustrine areas were probably shallow water environments with reducing conditions and a continuous supply of siliciclastics by small deltas. The many leaf imprints and coal layers support the presence of a lush vegetation at the time of deposition.[1] The abundance of lithic clasts near the top of the formation supports a renewed provenance area to the east; the uplift of the Eastern Ranges of the Colombian Andes,[6] due to activity of the La Salina Fault.[7]

Paleontology

The Santa Teresa Formation has provided fossil mollusks, described by De Porta and Solé De Porta in 1962 and De Porta Anodontites laciranus, Diplodon oponcintonis, Diplodon waringi,[8] and Corbula sp., among other mollusks described by De Porta in 1966.[1]

Regional correlations

Stratigraphy of the Llanos Basin and surrounding provinces
MaAgePaleomapRegional eventsCatatumboCordilleraproximal Llanosdistal LlanosPutumayoVSMEnvironmentsMaximum thicknessPetroleum geologyNotes
0.01Holocene
Holocene volcanism
Seismic activity
alluviumOverburden
1Pleistocene
Pleistocene volcanism
Andean orogeny 3
Glaciations
GuayaboSoatá
Sabana
NecesidadGuayaboGigante
Neiva
Alluvial to fluvial (Guayabo)550 m (1,800 ft)
(Guayabo)
[9][10][11][12]
2.6Pliocene
Pliocene volcanism
Andean orogeny 3
GABI
Subachoque
5.3MessinianAndean orogeny 3
Foreland
MarichuelaCaimánHonda[11][13]
13.5LanghianRegional floodingLeónhiatusCajaLeónLacustrine (León)400 m (1,300 ft)
(León)
Seal[12][14]
16.2BurdigalianMiocene inundations
Andean orogeny 2
C1Carbonera C1OspinaProximal fluvio-deltaic (C1)850 m (2,790 ft)
(Carbonera)
Reservoir[13][12]
17.3C2Carbonera C2Distal lacustrine-deltaic (C2)Seal
19C3Carbonera C3Proximal fluvio-deltaic (C3)Reservoir
21Early MiocenePebas wetlandsC4Carbonera C4BarzalosaDistal fluvio-deltaic (C4)Seal
23Late Oligocene
Andean orogeny 1
Foredeep
C5Carbonera C5OritoProximal fluvio-deltaic (C5)Reservoir[10][13]
25C6Carbonera C6Distal fluvio-lacustrine (C6)Seal
28Early OligoceneC7C7PepinoGualandayProximal deltaic-marine (C7)Reservoir[10][13][15]
32Oligo-EoceneC8UsmeC8onlapMarine-deltaic (C8)Seal
Source
[15]
35Late Eocene
MiradorMiradorCoastal (Mirador)240 m (790 ft)
(Mirador)
Reservoir[12][16]
40Middle EoceneRegaderahiatus
45
50Early Eocene
SochaLos CuervosDeltaic (Los Cuervos)260 m (850 ft)
(Los Cuervos)
Seal
Source
[12][16]
55Late PaleocenePETM
2000 ppm CO2
Los CuervosBogotáGualanday
60Early PaleoceneSALMABarcoGuaduasBarcoRumiyacoFluvial (Barco)225 m (738 ft)
(Barco)
Reservoir[9][10][13][12][17]
65Maastrichtian
KT extinctionCatatumboGuadalupeMonserrateDeltaic-fluvial (Guadalupe)750 m (2,460 ft)
(Guadalupe)
Reservoir[9][12]
72CampanianEnd of riftingColón-Mito Juan[12][18]
83SantonianVilleta/Güagüaquí
86Coniacian
89TuronianCenomanian-Turonian anoxic eventLa LunaChipaqueGachetáhiatusRestricted marine (all)500 m (1,600 ft)
(Gachetá)
Source[9][12][19]
93Cenomanian
Rift 2
100AlbianUneUneCaballosDeltaic (Une)500 m (1,600 ft)
(Une)
Reservoir[13][19]
113Aptian
CapachoFómequeMotemaYavíOpen marine (Fómeque)800 m (2,600 ft)
(Fómeque)
Source (Fóm)[10][12][20]
125BarremianHigh biodiversityAguardientePajaShallow to open marine (Paja)940 m (3,080 ft)
(Paja)
Reservoir[9]
129Hauterivian
Rift 1Tibú-
Mercedes
Las JuntashiatusDeltaic (Las Juntas)910 m (2,990 ft)
(Las Juntas)
Reservoir (LJun)[9]
133ValanginianRío NegroCáqueza
Macanal
Rosablanca
Restricted marine (Macanal)2,935 m (9,629 ft)
(Macanal)
Source (Mac)[10][21]
140BerriasianGirón
145TithonianBreak-up of PangeaJordánArcabucoBuenavista
Batá
SaldañaAlluvial, fluvial (Buenavista)110 m (360 ft)
(Buenavista)
"Jurassic"[13][22]
150Early-Mid Jurassic
Passive margin 2La Quinta
Montebel

Noreán
hiatusCoastal tuff (La Quinta)100 m (330 ft)
(La Quinta)
[23]
201Late Triassic
MucuchachiPayandé[13]
235Early Triassic
Pangeahiatus"Paleozoic"
250Permian
300Late Carboniferous
Famatinian orogenyCerro Neiva
()
[24]
340Early CarboniferousFossil fish
Romer's gap
Cuche
(355-385)
Farallones
()
Deltaic, estuarine (Cuche)900 m (3,000 ft)
(Cuche)
360Late Devonian
Passive margin 1Río Cachirí
(360-419)
Ambicá
()
Alluvial-fluvial-reef (Farallones)2,400 m (7,900 ft)
(Farallones)
[21][25][26][27][28]
390Early Devonian
High biodiversityFloresta
(387-400)
El Tíbet
Shallow marine (Floresta)600 m (2,000 ft)
(Floresta)
410Late SilurianSilurian mystery
425Early Silurianhiatus
440Late Ordovician
Rich fauna in BoliviaSan Pedro
(450-490)
Duda
()
470Early OrdovicianFirst fossilsBusbanzá
(>470±22)
Chuscales
Otengá
Guape
()
Río Nevado
()
Hígado
()
Agua Blanca
Venado
(470-475)
[29][30][31]
488Late Cambrian
Regional intrusionsChicamocha
(490-515)
Quetame
()
Ariarí
()
SJ del Guaviare
(490-590)
San Isidro
()
[32][33]
515Early CambrianCambrian explosion[31][34]
542Ediacaran
Break-up of Rodiniapre-Quetamepost-ParguazaEl Barro
()
Yellow: allochthonous basement
(Chibcha Terrane)
Green: autochthonous basement
(Río Negro-Juruena Province)
Basement[35][36]
600NeoproterozoicCariri Velhos orogenyBucaramanga
(600-1400)
pre-Guaviare[32]
800
Snowball Earth[37]
1000Mesoproterozoic
Sunsás orogenyAriarí
(1000)
La Urraca
(1030-1100)
[38][39][40][41]
1300Rondônia-Juruá orogenypre-AriaríParguaza
(1300-1400)
Garzón
(1180-1550)
[42]
1400
pre-Bucaramanga[43]
1600PaleoproterozoicMaimachi
(1500-1700)
pre-Garzón[44]
1800
Tapajós orogenyMitú
(1800)
[42][44]
1950Transamazonic orogenypre-Mitú[42]
2200Columbia
2530Archean
Carajas-Imataca orogeny[42]
3100Kenorland
Sources
Legend
  • group
  • important formation
  • fossiliferous formation
  • minor formation
  • (age in Ma)
  • proximal Llanos (Medina)[note 1]
  • distal Llanos (Saltarin 1A well)[note 2]

See also

Notes and references

Notes

  1. based on Duarte et al. (2019)[45], García González et al. (2009),[46] and geological report of Villavicencio[47]
  2. based on Duarte et al. (2019)[45] and the hydrocarbon potential evaluation performed by the UIS and ANH in 2009[48]

References

  1. 1 2 3 4 5 6 7 8 Acosta & Ulloa, 2001, p.64
  2. Lamus Ochoa et al., 2013, p.29
  3. Lamus Ochoa et al., 2013, p.34
  4. Lamus Ochoa et al., 2013, p.32
  5. Lamus Ochoa et al., 2013, p.22
  6. Lamus Ochoa et al., 2013, p.35
  7. Caballero et al., 2010, p.74
  8. Acosta Garay et al., 2002, p.49
  9. 1 2 3 4 5 6 García González et al., 2009, p.27
  10. 1 2 3 4 5 6 García González et al., 2009, p.50
  11. 1 2 García González et al., 2009, p.85
  12. 1 2 3 4 5 6 7 8 9 10 Barrero et al., 2007, p.60
  13. 1 2 3 4 5 6 7 8 Barrero et al., 2007, p.58
  14. Plancha 111, 2001, p.29
  15. 1 2 Plancha 177, 2015, p.39
  16. 1 2 Plancha 111, 2001, p.26
  17. Plancha 111, 2001, p.24
  18. Plancha 111, 2001, p.23
  19. 1 2 Pulido & Gómez, 2001, p.32
  20. Pulido & Gómez, 2001, p.30
  21. 1 2 Pulido & Gómez, 2001, pp.21-26
  22. Pulido & Gómez, 2001, p.28
  23. Correa Martínez et al., 2019, p.49
  24. Plancha 303, 2002, p.27
  25. Terraza et al., 2008, p.22
  26. Plancha 229, 2015, pp.46-55
  27. Plancha 303, 2002, p.26
  28. Moreno Sánchez et al., 2009, p.53
  29. Mantilla Figueroa et al., 2015, p.43
  30. Manosalva Sánchez et al., 2017, p.84
  31. 1 2 Plancha 303, 2002, p.24
  32. 1 2 Mantilla Figueroa et al., 2015, p.42
  33. Arango Mejía et al., 2012, p.25
  34. Plancha 350, 2011, p.49
  35. Pulido & Gómez, 2001, pp.17-21
  36. Plancha 111, 2001, p.13
  37. Plancha 303, 2002, p.23
  38. Plancha 348, 2015, p.38
  39. Planchas 367-414, 2003, p.35
  40. Toro Toro et al., 2014, p.22
  41. Plancha 303, 2002, p.21
  42. 1 2 3 4 Bonilla et al., 2016, p.19
  43. Gómez Tapias et al., 2015, p.209
  44. 1 2 Bonilla et al., 2016, p.22
  45. 1 2 Duarte et al., 2019
  46. García González et al., 2009
  47. Pulido & Gómez, 2001
  48. García González et al., 2009, p.60

Bibliography

See also sources for the correlation table

  • Acosta Garay, Jorge, and Carlos E. Ulloa Melo. 2001. Geología de la Plancha 227 La Mesa - 1:100,000, 1–80. INGEOMINAS.
  • Acosta Garay, Jorge Enrique; Rafael Guatame; Juan Carlos Caicedo A., and Jorge Ignacio Cárdenas. 2002. Geología de la Plancha 245 Girardot - 1:100,000, 1–101. INGEOMINAS.
  • Caballero, Víctor; Mauricio Parra, and Andrés Roberto Mora Bohórquez. 2010. Levantamiento de la Cordillera Oriental de Colombia durante el Eoceno tardío – Oligoceno temprano: Proveniencia sedimentaria en el Sinclinal de Nuevo Mundo, Cuenca Valle Medio del Magdalena, 45–77. 32; Boletín de Geología.
  • Lamus Ochoa, Felipe; Germán Bayona; Agustín Cardona, and Andrés Mora. 2013. Procedencia de las unidades cenozoicas del Sinclinal de Guaduas: implicación en la evolución tectónica del sur del Valle Medio del Magdalena y orógenos adyacentes, 1–42. 35; Boletín de Geología.

Maps

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.