星形菱形三十面體

在幾何學中,星形菱形三十面體是指菱形三十面體的星形化體,即把菱形三十面體的面和邊沿伸直到向外相交成星形的立體。溫尼爾在他的書《多面體模型》中列出許多星形多面體模型,其中也收錄了一些星形菱形三十面體[1],例如内侧菱形三十面体[2][3]

星形菱形三十面體
部分的星形菱形三十面體
完全星形菱形三十面體
完全星形菱形三十面體
菱形六十面體
菱形六十面體
大菱形三十面體
大菱形三十面體

歷史

星形菱形三十面體是一種多面體類型,屬於此類的多面體數量非常龐大。埃德(Ede)在1958年時列舉了13種基本的星形菱形三十面體類型[4]。鮑萊(Pawley)在1973年時提出了一些規則以令星形菱形三十面體可以完全被枚舉[5]

這些多面體種類繁多,大多都並未被觀察及描繪,因此大多數並未命名。梅塞爾(Messer)在1995年描述了其中227個星形化體[6](含原像菱形三十面體在內,即1種凸多面體和226種星形多面體[7][8])。

種類

菱形三十面體透過全部匹配能產生227種星形菱形三十面體[9],其中包括了115個鏡像不變的立體和112個具有手性鏡像的立體;透過米勒的規則[10] 可以產生358833098種星形菱形三十面體,其中包括了84959個鏡像不變的立體和358748139種具有手性鏡像的立體[9]

已命名的星形菱形三十面體

已命名的星形菱形三十面體十分少,其命名的原因多半與星形菱形三十面體無關,而是因為其他研究的同時剛好研究的立體屬於星形菱形三十面體,例如五複合立方體雖是一種星形菱形三十面體[11],但其因為是立方體複合體的相關研究而得名[12]

黃金一百二十面體

第一星形菱形三十面體的簡單多面體形式有120個面,又稱黃金一百二十面體。

第一星形菱形三十面體,又稱黃金一百二十面體,是菱形三十面體星形化的第一種形式,其對應形狀轉化為間單多面體(即去除自相交面隱沒於立體內部的面)後所形成的立體共由120個面、62個頂點和180條邊組成,且五種柏拉圖立體皆可以共用頂點地嵌入這個立體中。[13]

黃金一百二十面體的頂點座標都是由以下集合的元素組成[13]

{−φ³, −φ², −φ, 0, φ, φ², φ³}

其中,φ為黃金比例。

黃金一百二十面體的62個頂點,其中20個是來自一個正十二面體(或是為五個正四面體以兩種方式重和的五複合正四面體)、5x6=30個來自5個正八面體和12個來自一個正二十面體。[13]

列表

名稱 對稱群 圖像 星狀圖
菱形三十面體 Ih
黃金一百二十面體 Ih
菱形六十面體[14] Ih
五複合立方體[12] Ih
内侧菱形三十面体[2] Ih
大菱形三十面體[15] Ih
完全星形菱形三十面體[11] Ih

用途

部分星形菱形三十面體被一些數學學者認為是具代表性的立體,用於一些與幾何學相關著作的封面或標誌,例如大菱形三十面體[16][15]菱形六十面體[lower-roman 1][17]。前者被用於多面體領域著名著作《正多胞形》的封面上[16][15],後者為Wolfram Alpha标志[17]

參見

參考文獻

  1. Wenninger, Magnus. . Cambridge University Press. 1974. ISBN 0-521-09859-9.
  2. Weisstein, Eric W. (编). . at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语).原始內容存檔於2016-09-01).
  3. . software3d.com. (原始内容存档于2016-03-04).
  4. Ede, J. D. . Math. Gaz. 1958, 42: pp.98–100.
  5. Pawley, G. S. . Geometriae Dedicata. 1975-08-01, 4 (2): pp.221–232. doi:10.1007/BF00148756.
  6. Messer, P. W. . Structural Topology. 1995, 21: pp.25–46.
  7. George W. Hart. . Virtual Polyhedra. 1996 [2020-08-17]. (原始内容存档于2019-12-30).
  8. Paulo Freire. . mpifr-bonn.mpg.de. 1996 [2020-08-17]. (原始内容存档于2019-05-04).
  9. Webb, R. . software3d.com. [2019-09-06]. (原始内容存档于2019-04-27).
  10. Guy's. . steelpillow.com. 2010-12-19 [2016-03-26]. (原始内容存档于2016-03-04).
  11. George W. Hart. . Virtual Polyhedra. 1996 [2020-08-17]. (原始内容存档于2019-12-29).
  12. Weisstein, Eric W. (编). . at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语).
  13. . www.polyhedra-world.nc. 2005-06-25 [2022-07-30]. (原始内容存档于2022-07-30).
  14. Weisstein, Eric W. (编). . at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语).
  15. Weisstein, Eric W. (编). . at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语).
  16. Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, p. 103, 1973. ISBN 978-0486614809
  17. Weisstein, E. W. . 2018-12-28 [2020-08-20]. (原始内容存档于2020-07-18).
一手資料
  1. Weisstein, E. W. . 2009-05-19 [2020-08-20]. (原始内容存档于2020-02-15).

外部連結

维基共享资源上的相关多媒体资源:星形菱形三十面體
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.