极大紧子群
数学中,一个拓扑群 G 的极大紧子群 K 是一个在子空间拓扑下是紧空间的子群,且是这些子群中的极大元。
一个一般李群不一定有极大紧子群,但半单李群却一定存在,而且他们在理论中有重要地位。极大紧子群一般不是惟一的,但在相差一个共轭的意义下是惟一的——他们是本质惟一的。
例子
一个好例子是正交群 O(2),是一般线性群 GL(2,R) 的极大紧子群。一个相关的例子是循环群 SO(2),是SL(2, R)的极大紧子群。显然 SO(2) 在 GL(2, R) 中紧但不是极大元。非惟一性可从任何一个内积有一个相应的正交群看出来,本质惟一性对应于内积的本质惟一性。
定义
一个极大紧子群是紧子群种的极大群——极大(紧子群)——而不是一个极大子群如果它恰是紧群;后者也许可以称为紧(极大子群),但是任何时候都不是所想要意思(事实上极大正规子群一般都不是紧群)。
存在和惟一
应用
注
- 注意 g 不是惟一的,陪集 中任何元素都可以。
参考文献
- Helgason, Sigurdur, , Academic Press, 1978, ISBN 978-0-12-338460-7
另见
- 超特殊子群(Hyperspecial subgroup)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.