維塔利覆蓋引理
引理敘述
證明
有限情形
取這一族球中半徑最大的一個球,然後除去所有與相交的球。再從剩下的球中取半徑最大的為,如此類推。那麼任何其他的球必定因為和某個相交而被除去,這個球的半徑不大於,因此包含在之內。
討論
因為有無限多球時,可能不存在半徑最大的球,所以在構造中,每一步選擇的球的半徑,只要求接近餘下的球的半徑的上確界。而結果中的5並非最佳常數。將的定義中的的2換成任何大於1的數c,那麼就可把結果中的5換成1+2c,即可以用任何大於3的數取代。不過由於未必有半徑最大的球,以致不能像有限多球時用3取代,以下是一個簡單例子。
例子
在平面中,給出如下的一族球:對每個正整數n,是半徑為的閉球,若n為奇數,的圓心在;若n為偶數,則圓心在。所有球都包含原點(0,0),故任意兩個球都相交,因此包含互不相交的球的子集只能有一個球。這一族球的半徑上確界是2,然而全部球的半徑都小於2。若選任何一個為這個子集,因有半徑更大的球在原點的另一側,故此不覆蓋。
應用
這條引理用於證明哈代-李特爾伍德極大不等式。
參見
參考
- Evans, Lawrence C.; Gariepy, Ronald F. (1992). Measure Theory and Fine Properties of Functions. CRC Press.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.