甘油

甘油英語:),学名丙三醇[4],化学式為HOCH
2
CHOHCH
2
OH
,是一种简单的多元醇化合物。它是一种无色无臭有甜味的黏性液體,无毒。甘油主干存在于称为甘油酯脂质中. 由于它具有抗菌和抗病毒特性,因此广泛用于FDA批准的伤口和烧伤治疗。相反,它也用作细菌培养基。[5]它可作为衡量肝脏疾病的有效标志物。它还广泛用作食品工业中的甜味剂和药物配方中的保湿剂。由于其有三个羟基,甘油可与混溶并具有吸湿性[6]

甘油
甘油的球棍模型
甘油的空间填充模型
IUPAC名
propane-1,2,3-triol
1,2,3-丙三醇
别名 丙三醇
识别
CAS号 56-81-5  checkY
PubChem 753
ChemSpider 733
SMILES
 
  • OCC(O)CO
InChI
 
  • 1/C3H8O3/c4-1-3(6)2-5/h3-6H,1-2H2
InChIKey PEDCQBHIVMGVHV-UHFFFAOYAF
ChEBI 17522
DrugBank DB04077
KEGG D00028
IUPHAR配体 5195
性质
化学式 C3H8O3
摩尔质量 92.09 g·mol−1
外观 無色吸濕性液體
氣味 無味
密度 1.261 g/cm3
熔点 17.8 °C(291 K)
沸点 290 °C(563 K)
溶解性 混溶[1]
log P -2.32[2]
蒸氣壓 0.003 mmHg (50 °C)[1]
磁化率 -57.06·10−6 cm3/mol
折光度n
D
1.4746
黏度 1.412 Pa·s (20 °C)[3]
药理学
ATC代码 A06AG04A06),A06AX01, QA16QA03
危险性
NFPA 704
1
1
0
 
闪点 160 °C(320 °F)(閉杯)
176 °C(349 °F)(開杯)
PEL TWA 15 mg/m3(总)
TWA 5 mg/m3(呼吸)[1]
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。

生产

甘油通常从植物和动物来源获得,其中它以甘油三酯、甘油与长链羧酸形式存在。这些甘油三酯的水解皂化酯交换产生甘油以及脂肪酸衍生物:

甘油三酯可用氢氧化钠皂化得到甘油和脂肪钠盐或

甘油也是酯交换法生产生物柴油过程中的副产物。此法制得的粗甘油外观颜色较暗,并且具有类似糖浆的粘稠度。

典型的植物来源包括大豆棕榈。动物源性牛脂是另一个来源。在美国和欧洲,每年大约生产950000吨甘油。在2000年-2004年期间,仅仅是美国,便每年生产了大约350000吨甘油。[7] 欧盟的2003/30/EU条令规定,所有成员国在2010年前用生物柴油取代5.75%的矿物燃料。在2006年,预计到2020年,甘油的产量将是需求量的六倍,作为生物燃料生产的副产品,会出现甘油过剩的现象。[6]

来自甘油三酯水解的粗甘油可以通过活性炭处理来去除有机杂质,用碱去除未反应的甘油酯,用离子交换去除盐分。高纯度的甘油(>99.5%)可通过多步蒸馏获得;由于其高沸点(290°C),必须使用真空室。[6]

合成甘油

虽然通常不具有成本效益,但可以通过各种途径以丙烯为原料生产甘油。其中以环氧氯丙烷为中间体的合成路线最为重要,通过丙烯的氯代来得到氯丙烯,然后用次氯酸盐氧化成二氯丙醇,再用强碱与之反应得到环氧氯丙烷。最后将其水解得到甘油。 类似的合成路线还有通过丙烯醛环氧丙烷为中间体的合成路线。[6]

檢驗

新制氫氧化銅遇甘油顯絳藍色,該反應的實質是Cu2+與兩個-OH螯合形成的配合物

应用

食品工业

在食品和饮料中,甘油可用作保水剂溶剂甜味剂,并可能有助于保存食品。它还用作商业制备的低脂食品(例如饼干)中的填充剂,以及利口酒中的增稠剂。甘油和水用于保存某些类型的植物叶。

藥品和个人护理應用

在药房购买的一瓶甘油
甘油栓剂用作瀉藥

甘油可用於制作菸草加工、牙膏化妝品藥品

防冻剂

乙二醇丙二醇一样,甘油是一种非离子型亲液剂(kosmotrope),与水分子形成强氢键,与水-水氢键竞争。这种相互作用破坏了冰的形成。最低冰点温度约为−36 °F(−38 °C),对应于水中70%的甘油。

甘油历来被用作汽车防凍劑,后来被凝固点较低的乙二醇取代。虽然甘油-水混合物的最低冰点高于乙二醇-水混合物,但甘油是无毒的,并且正在重新检查以用于汽车应用。[8][9][10]

在实验室中,由于凝固点降低,甘油是在0°C以下温度下储存的试剂的溶剂的常见成分。它还用作冷冻保护剂,其中甘油溶解在水中,以减少冰晶对储存在冷冻溶液中的实验室生物(如真菌细菌线虫和哺乳动物胚胎)的损害。

化学中间产品

甘油可用于制作油漆、樹脂、樹膠等塗料,也可作為玻璃紙的軟化劑。甘油可用于生产硝化甘油,它是各种炸药和推进剂(如线状无烟火药)的基本成分。依靠制皂来供应副产品甘油使得难以增加产量以满足战时需求。因此,合成甘油工艺是二战前的国防重点。三官能聚醚多元醇由甘油和环氧丙烷生产。甘油氧化得到中草酸[11]甘油脱水可得到羟基丙酮

减振

甘油用作压力表的填充物以抑制振动。来自压缩机、发动机、泵等的外部振动会在波登管压力表内产生谐波振动,从而导致指针过度移动,从而给出不准确的读数。针的过度摆动也会损坏内部齿轮或其他部件,导致过早磨损。将甘油倒入量规中以代替空气空间时,可减少传递到针头的谐波振动,从而增加量规的使用寿命和可靠性。[12]

参见

参考资料

  1. NIOSH Pocket Guide to Chemical Hazards. . NIOSH.
  2. . [7 May 2018]. (原始内容存档于8 March 2020).
  3. Segur, J. B.; Oberstar, H. E. . Industrial & Engineering Chemistry. 1951, 43 (9): 2117–2120. doi:10.1021/ie50501a040.
  4. 陈至立 (编). . . 上海: 上海辞书出版社. 2019. ISBN 978-7-5326-5325-6.
  5. Dams, Rosemeri I.; Viana, Michael B.; Guilherme, Alexandre A.; Silva, Camila M.; Dos Santos, André B.; Angenent, Largus T.; Santaella, Sandra T.; Leitão, Renato C. . Biomass and Bioenergy. 2018, 118: 1–7 [16 September 2021]. S2CID 106010541. doi:10.1016/j.biombioe.2018.07.023. (原始内容存档于21 February 2022).
  6. Christoph, Ralf; Schmidt, Bernd; Steinberner, Udo; Dilla, Wolfgang; Karinen, Reetta. . 2006. ISBN 3527306730. doi:10.1002/14356007.a12_477.pub2. |chapter=被忽略 (帮助)
  7. Nilles, Dave. . Biodiesel Magazine. 2005 [2013-11-15]. (原始内容存档于2007-11-08).
  8. Hudgens, R. Douglas; Hercamp, Richard D.; Francis, Jaime; Nyman, Dan A.; Bartoli, Yolanda. . . SAE Technical Paper Series 1. 2007. doi:10.4271/2007-01-4000.
  9. Proposed ASTM Engine Coolant Standards Focus on Glycerin 存檔,存档日期14 September 2017.. Astmnewsroom.org. Retrieved on 15 August 2012.
  10. (pdf). New York: Glycerine Producers' Association. 1963 [2020-12-15]. (原始内容存档 (PDF)于2021-04-11) (美国英语).
  11. Ciriminna, Rosaria; Pagliaro, Mario. . Advanced Synthesis & Catalysis. 2003, 345 (3): 383–388. doi:10.1002/adsc.200390043.
  12. Pneumatic Systems: Principles and Maintenance by S. R. Majumdar. McGraw-Hill, 2006, p. 74
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.