Jury穩定性準則

Jury穩定性準則(Jury stability criterion)是在信号处理控制理论中,判斷線性離散系統穩定性的方式,是利用分析特徵多項式來進行分析。Jury穩定性準則是劳斯–赫尔维茨稳定性判据的離散時間版本。Jury稳定性判据要求系統的極點都要位在以原點為圓心的單位圓內,劳斯–赫尔维茨稳定性判据要求系統的極點在複數平面的左半邊。Jury穩定性準則得名自伊拉克裔美籍工程師殷巴爾·易卜拉欣·朱瑞

方法

系統的特徵多項式如下

用以下的方式來建構表格[1]

rowznzn-1zn-2z....z1z0
1a0a1a2...an-1an
2anan-1an-2...a1a0
3b0b1...bn-2bn-1
4bn-1bn-2...b1b0
5c0c1...cn-2
6cn-2cn-3...c0
.....................
2n-5p3p2p1p0
2n-4p0p1p2p3
2n-3q2q1q0

因此,第一行是多項式的係數,從常數項次而高次項次排列,第二行則是第一行的反序。

第三行是將第一行減去第二行乘以,而第四行是第三行的反序(並且維持最後一個元素為零)。

表格繼續往下延伸,直到有一行只有一個非零元素為止。

針對頭兩行相減的係數是,針對第三行及第四行相減的係數就變成,因此所得的多項式會少一項。

穩定性測試

,而,,...都是正值,表示系統的根都在單位圓內,系統穩定。只要上述有任何一個小於零,表示系統至少有一個根都在單位圓外,系統不穩定。

若Jury穩定性準則發現,,...中有一個為負值,即可結束測試,因為至少有一個根都在單位圓外,系統不穩定。

程式實現

此方式用電腦的動態陣列很容易實現。也可以確認系統所有的根(實根或是複數根)都在單位圓內。向量v是原多項式的係數,從最高項次到常數項。

        /* vvd is the jury array */
        vvd.push_back(v); // Store the first row
        reverse(v.begin(),v.end());
        vvd.push_back(v); // Store the second row

        for(i=2;;i+=2)
        {
            v.clear();
            double mult=vvd[i-2][vvd[i-2].size()-1]/vvd[i-2][0]; // This is an/a0 as mentioned in the article.

            for( j=0;j<vvd[i-2].size()-1;j++) // Take the last 2 rows and compute the next row
                   v.push_back(vvd[i-2][j] - vvd[i-1][j]*mult);

            vvd.push_back(v);
            reverse(v.begin(),v.end()); // reverse the next row
            vvd.push_back(v);
            if(v.size()==1) break;
         }

         // Check is done using
         for(i=0;i<vvd.size();i+=2)
         {
              if(vvd[i][0]<=0) break;
         }

         if(i==vvd.size())
              "All roots lie inside unit disc "
         else
              "no"

範例

若已知的分母多項式為,判斷該系統是否穩定。
解答:因為

的係數排列成朱利表(如下):

rowz4z3z2z1z0
14-402-1
2-120-44
315-1404
440-1415
5209-21056




即滿足Jury穩定條件,因此所有極點位於內,故系統是穩定的。

相關條目

參考資料

  1. Discrete-time control systems (2nd ed.), pg. 185. Prentice-Hall, Inc. Upper Saddle River, NJ, USA ©1995 ISBN 0-13-034281-5

若需要更多細節,可以參考以下連結:

進階參考資料:

有關實現的資料:

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.