三角形

三角形,又稱三邊形(英語: Triangle),是由三条线段顺次首尾相连,或不共線的三點兩兩連接,所组成的一个闭合的平面几何图形,是最基本和最少邊的多边形

三角形(英語: Triangle)
三角形
3
頂點3
施萊夫利符號{3}(正三角形時)
鮑爾斯縮寫
trig在维基数据编辑
面積有各種求面積的公式;
#面積一節
內角和一百八十度

一般用大写英语字母为三角形的顶点标号;用小写英语字母表示;用標號,又或者以這樣的顶点标号来表示。

分类

以角度分類

锐角三角形 钝角三角形 直角三角形
锐角三角形钝角三角形直角三角形

锐角三角形

銳角三角形的所有內角均為銳角

钝角三角形

鈍角三角形是其中一角為鈍角的三角形,其余兩角均小於90°。

直角三角形

有一个角是直角(90°)的三角形为直角三角形。成直角的两条边称为「直角邊」(cathetus),直角所对的边是「斜邊」(hypotenuse);或最長的邊稱為「弦」,底部的一邊稱作「勾」(又作「句」),另一邊稱為「股」。斜邊乘上斜邊上的高÷2=勾股相乘÷2=此直角三角形面積(ch=ab)

三角函数

直角三角形各邊與角度的關係,可以三角比表示。

以邊長分類

不等邊三角形 等邊三角形 等腰三角形
不等邊三角形等邊三角形等腰三角形

不等邊三角形

三條邊邊長皆不相等的三角形稱為不等邊三角形。

等邊三角形

等邊三角形(又称正三角形),为三边相等的三角形。其三個內角相等,均為60°。它是銳角三角形的一種。设其边长是 ,则其面積公式為

等邊三角形是正四面體、正八面體正二十面體這三個正多面體面的形狀。六個边长相同的等邊三角形可以拼成一個正六邊形

等腰三角形

等腰直角三角形只有一種形狀,其中兩个角為45度。

等腰三角形是三条中有两条边相等(或是其中兩隻內角相等)的三角形。等腰三角形中的两条相等的边被称为「腰」,而另一条边被称为「底边」,两条腰交叉组成的那个点被称为「顶点」,它们组成的角被称为「顶角」。

等边三角形和等腰直角三角形是等腰三角形的特殊形式。

令其底边是 ,腰是 ,则其面積公式為 等腰三角形的对应高,角平分线和中线重合。

退化三角形

退化三角形是指面積為零的三角形。满足下列条件之一的三角形即可称为退化三角形:三个内角的度数为(180°,0°,0°)或(90°,90°,0°);三边其中一条边的长度为0;一条边的长度等于另外两条之和。有人认为退化三角形并不能算是三角形,這是由於它介乎於三角不等式之間,在一些資料中已否定了其中一條邊等於其餘兩條邊之和的情況。

勒洛三角形

勒洛三角形英語:),也譯作萊洛三角形或弧三角形,又被稱為劃粉形或曲邊三角形,是除了圓形以外,最簡單易懂的勒洛多邊形,一個定寬曲線。將一個曲線圖放在兩條平行線中間,使之與這兩平行線相切,則可以做到:無論這個曲線圖如何運動,只要它還是在這兩條平行線內,就始終與這兩條平行線相切。這個定義由十九世紀的德國工程師弗朗茨·勒洛命名。

一般性质

三角不等式

  • 三角边長不等式
    三角形两边之和大于第三边,两边之差的绝对值小于第三边。如果兩者相等,则是退化三角形。
  • 三角內外角不等式
    三角形任意一个外角大于不相邻的一个内角。

角度

  • 三角形外角
    三角形兩內角之和,等於第三角的外角。
  • 三角形內角和
    在歐幾里德平面內,三角形的內角和等於180°。

勾股定理

勾股定理,又稱畢氏定理毕达哥拉斯定理。其斷言,若直角三角形的其中一邊 為斜邊,即 的對角 ,則

勾股定理的逆定理亦成立,即若三角形滿足

正弦定理

为三角形外接圓半径,則

餘弦定理

對於任意三角形:

勾股定理是本定理的特殊情况,即当角 时, ,于是 化简为

全等及相似

全等三角形

三角形具有穩定性,若二個三角形有以下的邊角關係確定後,它的形狀、大小就不會改變,二個三角形即為全等三角形。全等三角形的判斷準則有以下幾種:

  • SSS(Side-Side-Side,邊、邊、邊):各三角形的三條邊的長度都對應地相等。
  • SAS(Side-Angle-Side,邊、角、邊):各三角形的其中兩條邊的長度都對應地相等,且兩條邊夾著的角都對應地相等。
  • ASA(Angle-Side-Angle,角、邊、角):各三角形的其中兩個角都對應地相等,且兩個角夾著的邊都對應地相等。
  • RHS(Right Angle-Hypotenuse-Side,直角、斜邊、邊):在直角三角形中,斜邊及另外一條直角邊對應地相等。[1]
  • AAS(Angle-Angle-Side,角、角、邊):各三角形的其中兩個角都對應地相等,且其中一組對應角的對邊也對應地相等。

SSA(Side-Side-Angle、邊、邊、角)不能保证两个三角形全等,除非該角大於等於90°,此時可以保證全等。[2]:34[3]

相似三角形

  • AA(Angle-Angle,角、角):各三角形的其中兩個角的都對應地相等。(或稱AAA(Angle-Angle-Angle,角、角、角))
  • 三邊成比例(3 sides proportional):各三角形的三條邊的長度都成同一比例。
  • 兩邊成比例且夾角相等(ratio of 2 sides, inc.∠):各三角形的兩條邊之長度都成同一比例,且兩條邊之夾角都對應地相等。(或稱 2 sides proportional, inc. ∠ equal)

特殊線段

三角形中有著一些特殊線段,是三角形研究的重要對象。

  • 中線(median):三角形一边中点与这边所对頂点的连线段。
  • 高线(altitude):从三角形一个顶点向它的对边所作的垂线段。
  • 角平分线(angle bisector):平分三角形一角、一个端点在这一角的对边上的线段。
  • 垂直平分線(perpendicular bisector):通過三角形一边中点与該边所垂直的线段,又稱中垂线。

以上特殊線段,每個三角形均有三條,且三線共點。

中线长度

设在中,若三边的中線分别为,则:

高线长度

设在中,連接三个顶点上的高分別记作,則:

其中

角平分线长度

设在中,若三个角的角平分线分别为,则:

三角形的心

三角形的內心(Incenter) 、外心(Circumcenter)、垂心(Orthocenter) 及形心(Centroid)稱為三角形的四心,定義如下:

名称定义图示备注
內心三个內角的角平分线的交點該點為三角形內切圓的圓心。
外心三條邊的中垂線的交點該點為三角形外接圓的圓心。
垂心三条高线的交點
形心(重心)三条中线的交點被交点划分的线段比例为1:2(靠近角的一段较长)。

关于三角形的四心,有这样的一首诗:







垂心(蓝)、形心(黄)和外心(绿)能連成一線,且成比例1:2,稱為歐拉線,與九點圓的圓心(紅)四點共線,為垂心和形心線段的中點。

連同以下的旁心,合稱為三角形的五心:

名称定义图示备注
旁心外角的角平分线的交點有三个,为三角形某一边上的旁切圆圆心

外接圆和内切圆半径

設外接圆半径為 , 内切圆半径為 ,則:

其中為三角形面積;為三角形半周長,

面積

基本公式

三角形的面積 是底邊 與高 乘積的一半,即:

其中的高是指底邊與對角的垂直距離。

已知兩邊及其夾角

為已知的兩邊, 為該兩邊的夾角,則三角形面積是:

已知兩角及其夾邊

為已知的兩角, 為該兩角的夾邊,則三角形面積是:

已知三邊長

海倫公式,其表示形式為:

其中 等於三角形的半周長,即:

秦九韶亦求過類似的公式,稱為三斜求積法

也有用幂和来表示的公式:

[註 1]

亦可用Cayley–Menger行列式表示的公式:

基於海伦公式在三角形擁有非常小的角度時並不數值穩定,有一個變化的計法。設 ,三角形面積為:

已知坐标系中三顶点坐标

三个顶点构成的三角形,其面积可用行列式的絕對值表示:

若三個頂點設在三維坐標系上,即由 三个顶点构成三角形,其面積等於各自在主平面上投影面積的畢氏和,即:

已知周界及內切圓或外接圓半徑

設三角形三邊邊長分別為 ,三角形半周長( )為 ,內切圓半徑為 ,則:

若設外接圓半徑為 ,則:

已知兩邊向量

設從一角出發,引出兩邊的向量為 ,三角形的面積為:

半角定理

在三角形中,三个角的半角的正切和三边有如下关系:

其他有关三角形的定理

  • 外角定理
  • 拿破仑三角形
  • 费马点
  • 欧拉线
  • 梅涅劳斯定理
  • 樞紐定理
  • 維維亞尼定理
  • 莫雷角三分線定理

註釋

  1. 應用實例,如外森比克不等式的證明

參考資料

  1. P.F.Man,C.M.Yeung,K.H.Yeung,Y.F.Kwok,H.Y.Cheung,MATHEMATICS in Action SECOND EDITION 1B (Published by Longman Hong Kong Education): pp:9.25
  2. 黃德華. . 臺灣數學教師. 2016, 37 (2): 17–49 [2022-01-26]. doi:10.6610/TJMT.20160629.01. (原始内容存档于2022-01-26). ⋯⋯SSO(O 是一鈍角)也是判断全等三角形的正確條件
  3. Mironychev, Alexander F. . Journal of Mathematics and System Science. 2018, 8 (2): 59–66 [2022-01-26]. doi:10.17265/2159-5291/2018.02.003. (原始内容存档于2022-01-26).

參看

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.