An estrogen ester is an ester of an estrogen, most typically of estradiol but also of other estrogens such as estrone, estriol, and even nonsteroidal estrogens like diethylstilbestrol.[1][2][3] Esterification renders estradiol into a prodrug of estradiol with increased resistance to first-pass metabolism, slightly improving its oral bioavailability.[1][2][4] In addition, estrogen esters have increased lipophilicity, which results in a longer duration when given by intramuscular or subcutaneous injection due to the formation of a long-lasting local depot in muscle and fat.[1][2][3] Conversely, this is not the case with intravenous injection or oral administration.[1][5] Estrogen esters are rapidly hydrolyzed into their parent estrogen by esterases once they have been released from the depot.[1][2] Because estradiol esters are prodrugs of estradiol, they are considered to be natural and bioidentical forms of estrogen.[2][1][6]

Estrogen esters are used in hormone therapy, hormonal contraception, and high-dose estrogen therapy (e.g., for prostate cancer and breast cancer), among other indications.[1][2] The first estrogen ester to be marketed was estradiol benzoate in 1933, which was followed by many more.[7][8] One of the most widely used estradiol esters is estradiol valerate, which was first introduced in 1954.[9] Other major estradiol esters that are or have been used in medicine include estradiol acetate, estradiol cypionate, estradiol dipropionate, estradiol enantate, estradiol undecylate, and polyestradiol phosphate (an estrogen ester polymer), as well as the nitrogen mustard alkylating antineoplastic agent estramustine phosphate (estradiol normustine phosphate).[2][10]

The most common vehicles for injections of steroids and steroid esters are oil solutions, but aqueous solutions, aqueous suspensions, and emulsions have also been used.[11] The durations of estrogen esters are not prolonged if they are given orally, vaginally, or by intravenous injection.[11]

Pharmacology

Estrogen esters are essentially inactive themselves, with esters such as estradiol valerate and estradiol sulfate having about 2% of the affinity of estradiol for the estrogen receptor.[12] Likewise, the estrogen ether mestranol (ethinylestradiol 3-methyl ether) has about 1% of the affinity of estradiol for the estrogen receptor.[12] Estrone sulfate has less than 1% of the affinity of estradiol for the estrogen receptor.[13] As such, estrogen esters do not bind to the estrogen receptor except at extremely high concentrations.[14] The residual affinity of estrogen esters for the estrogen receptor in bioassays may actually be due to conversion into the parent estrogen, as attempts to prevent or limit this conversion have been found to abolish binding to the estrogen receptor and estrogenicity.[15][16][17]

Affinities of estrogen receptor ligands for the ERα and ERβ
LigandOther namesRelative binding affinities (RBA, %)aAbsolute binding affinities (Ki, nM)aAction
ERαERβERαERβ
EstradiolE2; 17β-Estradiol1001000.115 (0.04–0.24)0.15 (0.10–2.08)Estrogen
EstroneE1; 17-Ketoestradiol16.39 (0.7–60)6.5 (1.36–52)0.445 (0.3–1.01)1.75 (0.35–9.24)Estrogen
EstriolE3; 16α-OH-17β-E212.65 (4.03–56)26 (14.0–44.6)0.45 (0.35–1.4)0.7 (0.63–0.7)Estrogen
EstetrolE4; 15α,16α-Di-OH-17β-E24.03.04.919Estrogen
Alfatradiol17α-Estradiol20.5 (7–80.1)8.195 (2–42)0.2–0.520.43–1.2Metabolite
16-Epiestriol16β-Hydroxy-17β-estradiol7.795 (4.94–63)50 ? ?Metabolite
17-Epiestriol16α-Hydroxy-17α-estradiol55.45 (29–103)79–80 ? ?Metabolite
16,17-Epiestriol16β-Hydroxy-17α-estradiol1.013 ? ?Metabolite
2-Hydroxyestradiol2-OH-E222 (7–81)11–352.51.3Metabolite
2-Methoxyestradiol2-MeO-E20.0027–2.01.0 ? ?Metabolite
4-Hydroxyestradiol4-OH-E213 (8–70)7–561.01.9Metabolite
4-Methoxyestradiol4-MeO-E22.01.0 ? ?Metabolite
2-Hydroxyestrone2-OH-E12.0–4.00.2–0.4 ? ?Metabolite
2-Methoxyestrone2-MeO-E1<0.001–<1<1 ? ?Metabolite
4-Hydroxyestrone4-OH-E11.0–2.01.0 ? ?Metabolite
4-Methoxyestrone4-MeO-E1<1<1 ? ?Metabolite
16α-Hydroxyestrone16α-OH-E1; 17-Ketoestriol2.0–6.535 ? ?Metabolite
2-Hydroxyestriol2-OH-E32.01.0 ? ?Metabolite
4-Methoxyestriol4-MeO-E31.01.0 ? ?Metabolite
Estradiol sulfateE2S; Estradiol 3-sulfate<1<1 ? ?Metabolite
Estradiol disulfateEstradiol 3,17β-disulfate0.0004 ? ? ?Metabolite
Estradiol 3-glucuronideE2-3G0.0079 ? ? ?Metabolite
Estradiol 17β-glucuronideE2-17G0.0015 ? ? ?Metabolite
Estradiol 3-gluc. 17β-sulfateE2-3G-17S0.0001 ? ? ?Metabolite
Estrone sulfateE1S; Estrone 3-sulfate<1<1>10>10Metabolite
Estradiol benzoateEB; Estradiol 3-benzoate10 ? ? ?Estrogen
Estradiol 17β-benzoateE2-17B11.332.6 ? ?Estrogen
Estrone methyl etherEstrone 3-methyl ether0.145 ? ? ?Estrogen
ent-Estradiol1-Estradiol1.31–12.349.44–80.07 ? ?Estrogen
Equilin7-Dehydroestrone13 (4.0–28.9)13.0–490.790.36Estrogen
Equilenin6,8-Didehydroestrone2.0–157.0–200.640.62Estrogen
17β-Dihydroequilin7-Dehydro-17β-estradiol7.9–1137.9–1080.090.17Estrogen
17α-Dihydroequilin7-Dehydro-17α-estradiol18.6 (18–41)14–320.240.57Estrogen
17β-Dihydroequilenin6,8-Didehydro-17β-estradiol35–6890–1000.150.20Estrogen
17α-Dihydroequilenin6,8-Didehydro-17α-estradiol20490.500.37Estrogen
Δ8-Estradiol8,9-Dehydro-17β-estradiol68720.150.25Estrogen
Δ8-Estrone8,9-Dehydroestrone19320.520.57Estrogen
EthinylestradiolEE; 17α-Ethynyl-17β-E2120.9 (68.8–480)44.4 (2.0–144)0.02–0.050.29–0.81Estrogen
MestranolEE 3-methyl ether ?2.5 ? ?Estrogen
MoxestrolRU-2858; 11β-Methoxy-EE35–435–200.52.6Estrogen
Methylestradiol17α-Methyl-17β-estradiol7044 ? ?Estrogen
DiethylstilbestrolDES; Stilbestrol129.5 (89.1–468)219.63 (61.2–295)0.040.05Estrogen
HexestrolDihydrodiethylstilbestrol153.6 (31–302)60–2340.060.06Estrogen
DienestrolDehydrostilbestrol37 (20.4–223)56–4040.050.03Estrogen
Benzestrol (B2)114 ? ? ?Estrogen
ChlorotrianiseneTACE1.74 ?15.30 ?Estrogen
TriphenylethyleneTPE0.074 ? ? ?Estrogen
TriphenylbromoethyleneTPBE2.69 ? ? ?Estrogen
TamoxifenICI-46,4743 (0.1–47)3.33 (0.28–6)3.4–9.692.5SERM
Afimoxifene4-Hydroxytamoxifen; 4-OHT100.1 (1.7–257)10 (0.98–339)2.3 (0.1–3.61)0.04–4.8SERM
Toremifene4-Chlorotamoxifen; 4-CT ? ?7.14–20.315.4SERM
ClomifeneMRL-4125 (19.2–37.2)120.91.2SERM
CyclofenilF-6066; Sexovid151–152243 ? ?SERM
NafoxidineU-11,000A30.9–44160.30.8SERM
Raloxifene41.2 (7.8–69)5.34 (0.54–16)0.188–0.5220.2SERM
ArzoxifeneLY-353,381 ? ?0.179 ?SERM
LasofoxifeneCP-336,15610.2–16619.00.229 ?SERM
OrmeloxifeneCentchroman ? ?0.313 ?SERM
Levormeloxifene6720-CDRI; NNC-460,0201.551.88 ? ?SERM
OspemifeneDeaminohydroxytoremifene0.82–2.630.59–1.22 ? ?SERM
Bazedoxifene ? ?0.053 ?SERM
EtacstilGW-56384.3011.5 ? ?SERM
ICI-164,38463.5 (3.70–97.7)1660.20.08Antiestrogen
FulvestrantICI-182,78043.5 (9.4–325)21.65 (2.05–40.5)0.421.3Antiestrogen
PropylpyrazoletriolPPT49 (10.0–89.1)0.120.4092.8ERα agonist
16α-LE216α-Lactone-17β-estradiol14.6–570.0890.27131ERα agonist
16α-Iodo-E216α-Iodo-17β-estradiol30.22.30 ? ?ERα agonist
MethylpiperidinopyrazoleMPP110.05 ? ?ERα antagonist
DiarylpropionitrileDPN0.12–0.256.6–1832.41.7ERβ agonist
8β-VE28β-Vinyl-17β-estradiol0.3522.0–8312.90.50ERβ agonist
PrinaberelERB-041; WAY-202,0410.2767–72 ? ?ERβ agonist
ERB-196WAY-202,196 ?180 ? ?ERβ agonist
ErteberelSERBA-1; LY-500,307 ? ?2.680.19ERβ agonist
SERBA-2 ? ?14.51.54ERβ agonist
Coumestrol9.225 (0.0117–94)64.125 (0.41–185)0.14–80.00.07–27.0Xenoestrogen
Genistein0.445 (0.0012–16)33.42 (0.86–87)2.6–1260.3–12.8Xenoestrogen
Equol0.2–0.2870.85 (0.10–2.85) ? ?Xenoestrogen
Daidzein0.07 (0.0018–9.3)0.7865 (0.04–17.1)2.085.3Xenoestrogen
Biochanin A0.04 (0.022–0.15)0.6225 (0.010–1.2)1748.9Xenoestrogen
Kaempferol0.07 (0.029–0.10)2.2 (0.002–3.00) ? ?Xenoestrogen
Naringenin0.0054 (<0.001–0.01)0.15 (0.11–0.33) ? ?Xenoestrogen
8-Prenylnaringenin8-PN4.4 ? ? ?Xenoestrogen
Quercetin<0.001–0.010.002–0.040 ? ?Xenoestrogen
Ipriflavone<0.01<0.01 ? ?Xenoestrogen
Miroestrol0.39 ? ? ?Xenoestrogen
Deoxymiroestrol2.0 ? ? ?Xenoestrogen
β-Sitosterol<0.001–0.0875<0.001–0.016 ? ?Xenoestrogen
Resveratrol<0.001–0.0032 ? ? ?Xenoestrogen
α-Zearalenol48 (13–52.5) ? ? ?Xenoestrogen
β-Zearalenol0.6 (0.032–13) ? ? ?Xenoestrogen
Zeranolα-Zearalanol48–111 ? ? ?Xenoestrogen
Taleranolβ-Zearalanol16 (13–17.8)140.80.9Xenoestrogen
ZearalenoneZEN7.68 (2.04–28)9.45 (2.43–31.5) ? ?Xenoestrogen
ZearalanoneZAN0.51 ? ? ?Xenoestrogen
Bisphenol ABPA0.0315 (0.008–1.0)0.135 (0.002–4.23)19535Xenoestrogen
EndosulfanEDS<0.001–<0.01<0.01 ? ?Xenoestrogen
KeponeChlordecone0.0069–0.2 ? ? ?Xenoestrogen
o,p'-DDT0.0073–0.4 ? ? ?Xenoestrogen
p,p'-DDT0.03 ? ? ?Xenoestrogen
Methoxychlorp,p'-Dimethoxy-DDT0.01 (<0.001–0.02)0.01–0.13 ? ?Xenoestrogen
HPTEHydroxychlor; p,p'-OH-DDT1.2–1.7 ? ? ?Xenoestrogen
TestosteroneT; 4-Androstenolone<0.0001–<0.01<0.002–0.040>5000>5000Androgen
DihydrotestosteroneDHT; 5α-Androstanolone0.01 (<0.001–0.05)0.0059–0.17221–>500073–1688Androgen
Nandrolone19-Nortestosterone; 19-NT0.010.2376553Androgen
DehydroepiandrosteroneDHEA; Prasterone0.038 (<0.001–0.04)0.019–0.07245–1053163–515Androgen
5-AndrostenediolA5; Androstenediol6173.60.9Androgen
4-Androstenediol0.50.62319Androgen
4-AndrostenedioneA4; Androstenedione<0.01<0.01>10000>10000Androgen
3α-Androstanediol3α-Adiol0.070.326048Androgen
3β-Androstanediol3β-Adiol3762Androgen
Androstanedione5α-Androstanedione<0.01<0.01>10000>10000Androgen
Etiocholanedione5β-Androstanedione<0.01<0.01>10000>10000Androgen
Methyltestosterone17α-Methyltestosterone<0.0001 ? ? ?Androgen
Ethinyl-3α-androstanediol17α-Ethynyl-3α-adiol4.0<0.07 ? ?Estrogen
Ethinyl-3β-androstanediol17α-Ethynyl-3β-adiol505.6 ? ?Estrogen
ProgesteroneP4; 4-Pregnenedione<0.001–0.6<0.001–0.010 ? ?Progestogen
NorethisteroneNET; 17α-Ethynyl-19-NT0.085 (0.0015–<0.1)0.1 (0.01–0.3)1521084Progestogen
Norethynodrel5(10)-Norethisterone0.5 (0.3–0.7)<0.1–0.221453Progestogen
Tibolone7α-Methylnorethynodrel0.5 (0.45–2.0)0.2–0.076 ? ?Progestogen
Δ4-Tibolone7α-Methylnorethisterone0.069–<0.10.027–<0.1 ? ?Progestogen
3α-Hydroxytibolone2.5 (1.06–5.0)0.6–0.8 ? ?Progestogen
3β-Hydroxytibolone1.6 (0.75–1.9)0.070–0.1 ? ?Progestogen
Footnotes: a = (1) Binding affinity values are of the format "median (range)" (# (#–#)), "range" (#–#), or "value" (#) depending on the values available. The full sets of values within the ranges can be found in the Wiki code. (2) Binding affinities were determined via displacement studies in a variety of in-vitro systems with labeled estradiol and human ERα and ERβ proteins (except the ERβ values from Kuiper et al. (1997), which are rat ERβ). Sources: See template page.
Affinities and estrogenic potencies of estrogen esters and ethers at the estrogen receptors
Estrogen Other names RBATooltip Relative binding affinity (%)a REP (%)b
ER ERα ERβ
Estradiol E2 100 100 100
Estradiol 3-sulfate E2S; E2-3S  ? 0.02 0.04
Estradiol 3-glucuronide E2-3G  ? 0.02 0.09
Estradiol 17β-glucuronide E2-17G  ? 0.002 0.0002
Estradiol benzoate EB; Estradiol 3-benzoate 10 1.1 0.52
Estradiol 17β-acetate E2-17A 31–45 24  ?
Estradiol diacetate EDA; Estradiol 3,17β-diacetate  ? 0.79  ?
Estradiol propionate EP; Estradiol 17β-propionate 19–26 2.6  ?
Estradiol valerate EV; Estradiol 17β-valerate 2–11 0.04–21  ?
Estradiol cypionate EC; Estradiol 17β-cypionate  ?c 4.0  ?
Estradiol palmitate Estradiol 17β-palmitate 0  ?  ?
Estradiol stearate Estradiol 17β-stearate 0  ?  ?
Estrone E1; 17-Ketoestradiol 11 5.3–38 14
Estrone sulfate E1S; Estrone 3-sulfate 2 0.004 0.002
Estrone glucuronide E1G; Estrone 3-glucuronide  ? <0.001 0.0006
Ethinylestradiol EE; 17α-Ethynylestradiol 100 17–150 129
Mestranol EE 3-methyl ether 1 1.3–8.2 0.16
Quinestrol EE 3-cyclopentyl ether  ? 0.37  ?
Footnotes: a = Relative binding affinities (RBAs) were determined via in-vitro displacement of labeled estradiol from estrogen receptors (ERs) generally of rodent uterine cytosol. Estrogen esters are variably hydrolyzed into estrogens in these systems (shorter ester chain length -> greater rate of hydrolysis) and the ER RBAs of the esters decrease strongly when hydrolysis is prevented. b = Relative estrogenic potencies (REPs) were calculated from half-maximal effective concentrations (EC50) that were determined via in-vitro β‐galactosidase (β-gal) and green fluorescent protein (GFP) production assays in yeast expressing human ERα and human ERβ. Both mammalian cells and yeast have the capacity to hydrolyze estrogen esters. c = The affinities of estradiol cypionate for the ERs are similar to those of estradiol valerate and estradiol benzoate (figure). Sources: See template page.

In general, the longer the fatty acid ester chain of an estrogen ester, the greater its lipophilicity, and the longer the duration of the estrogen ester with intramuscular injection.[1][10] It has been said that, via intramuscular injection, the duration of estradiol benzoate (with an ester of length 1 carbon plus a benzene ring) is 2 to 3 days, of estradiol dipropionate (with two esters each of length 2 carbons) is 1 to 2 weeks, of estradiol valerate (ester of 5 carbons) is 1 to 3 weeks, and of estradiol cypionate (ester of 3 carbons plus a cyclopentane ring) is 3 to 4 weeks.[18] Estradiol enantate (ester of 7 carbons) has a duration of around 20 days.[2][19][20] Likewise, estradiol undecylate (ester of 10 carbons) has a very extended duration, which is longer than that of all of the aforementioned esters.[10][21][22]

Pharmacokinetics of three estradiol esters by intramuscular injection
EstrogenDoseCmaxTmaxDuration
Estradiol benzoate5 mgE2: 940 pg/mL
E1: 343 pg/mL
E2: 1.8 days
E1: 2.4 days
4–5 days
Estradiol valerate5 mgE2: 667 pg/mL
E1: 324 pg/mL
E2: 2.2 days
E1: 2.7 days
7–8 days
Estradiol cypionate5 mgE2: 338 pg/mL
E1: 145 pg/mL
E2: 3.9 days
E1: 5.1 days
11 days
Notes: All via i.m. injection of oil solution. Determinations via radioimmunoassay with chromatographic separation. Sources: See template.
Potencies and durations of natural estrogens by intramuscular injection
EstrogenFormDose (mg)Duration by dose (mg)
EPDCICD
EstradiolAq. soln. ?<1 d
Oil soln.40–601–2 ≈ 1–2 d
Aq. susp. ?3.50.5–2 ≈ 2–7 d; 3.5 ≈ >5 d
Microsph. ?1 ≈ 30 d
Estradiol benzoateOil soln.25–351.66 ≈ 2–3 d; 5 ≈ 3–6 d
Aq. susp.2010 ≈ 16–21 d
Emulsion ?10 ≈ 14–21 d
Estradiol dipropionateOil soln.25–305 ≈ 5–8 d
Estradiol valerateOil soln.20–3055 ≈ 7–8 d; 10 ≈ 10–14 d;
40 ≈ 14–21 d; 100 ≈ 21–28 d
Estradiol benz. butyrateOil soln. ?1010 ≈ 21 d
Estradiol cypionateOil soln.20–305 ≈ 11–14 d
Aq. susp. ?55 ≈ 14–24 d
Estradiol enanthateOil soln. ?5–1010 ≈ 20–30 d
Estradiol dienanthateOil soln. ?7.5 ≈ >40 d
Estradiol undecylateOil soln. ?10–20 ≈ 40–60 d;
25–50 ≈ 60–120 d
Polyestradiol phosphateAq. soln.40–6040 ≈ 30 d; 80 ≈ 60 d;
160 ≈ 120 d
EstroneOil soln. ?1–2 ≈ 2–3 d
Aq. susp. ?0.1–2 ≈ 2–7 d
EstriolOil soln. ?1–2 ≈ 1–4 d
Polyestriol phosphateAq. soln. ?50 ≈ 30 d; 80 ≈ 60 d
Notes and sources
Notes: All aqueous suspensions are of microcrystalline particle size. Estradiol production during the menstrual cycle is 30–640 µg/d (6.4–8.6 mg total per month or cycle). The vaginal epithelium maturation dosage of estradiol benzoate or estradiol valerate has been reported as 5 to 7 mg/week. An effective ovulation-inhibiting dose of estradiol undecylate is 20–30 mg/month. Sources: See template.

Polyestradiol phosphate is an atypical estradiol ester.[23][24] It is a phosphoric acid ester of estradiol in the form of a polymer, with an average polymer chain length of approximately 13 repeat units of estradiol phosphate.[23] It is slowly cleaved into estradiol and phosphoric acid by phosphatases.[23] Compared to conventional estradiol esters, polyestradiol phosphate has an extremely long duration; its elimination half-life is approximately 70 days.[24] Whereas conventional estradiol esters form a long-lasting depot in muscle and fat at the site of injection,[1] this is not the case with polyestradiol phosphate.[25] Instead, polyestradiol phosphate is taken up rapidly into the bloodstream following injection (by 90% within 24 hours), where it circulates, and is accumulated in the reticuloendothelial system.[25] Unlike other estradiol esters, polyestradiol phosphate is resistant to hydrolysis, which may be because it is a phosphatase inhibitor and may inhibit its own metabolism.[23]

Estrogen esters also occur naturally in the body, for instance estrogen conjugates like estrone sulfate and estrone glucuronide and the very long-lived lipoidal estradiol, which is constituted by ultra-long-chain esters like estradiol palmitate (ester of 16 carbons) and estradiol stearate (ester of 18 carbons).[1][2][26]

Chemistry

Estradiol plus the fatty acid valeric acid (valerate) equals estradiol valerate, a C17β ester of estradiol and one of the most widely used estrogen esters.[27]
Polyestradiol phosphate, a polymer of estradiol phosphate, the C17β phosphoric acid ester of estradiol. It has on average of 13 repeat units.

Estradiol esters have an ester moiety, usually a straight-chain fatty acid (e.g., valeric acid) or an aromatic fatty acid (e.g., benzoic acid), attached at the C3 and/or C17β positions of the steroid nucleus. These alkoxy moieties are substituted in place of the hydroxyl groups present in the unesterified estradiol molecule. Fatty acid esters serve to increase the lipophilicity of estradiol, increasing its solubility in fat. This causes them to form a depot with intramuscular or subcutaneous injection and gives them a long duration when administered by these routes.

Some estradiol esters have other moieties instead of fatty acids as the esters. Such esters include sulfuric acid (as in estradiol sulfate), sulfamic acid (as in estradiol sulfamate), phosphoric acid (as in estradiol phosphate), glucuronic acid (as in estradiol glucuronide, and others (e.g., estramustine phosphate (estradiol 3-normustine 17β-phosphate)). These esters are all hydrophilic, and have greater water solubility than estradiol or fatty acid estradiol esters. Unlike fatty acid estradiol esters, water-soluble estradiol esters can be administered by intravenous injection.

A few estrogen esters are polymers. These include polyestradiol phosphate and polyestriol phosphate, which are polymers of estradiol phosphate and estriol phosphate monomers, respectively. The monomers are connected in both cases by phosphate groups via the C3 and C17β positions. Polyestradiol phosphate has an average polymer chain length of approximately 13 repeat units of estradiol phosphate.[23] That is, each polyestradiol phosphate molecule is a polymer consisting on average of 13 estradiol phosphate molecules bonded together.[23] These polymeric estrogen esters are hydrophilic and water-soluble. Upon intramuscular injection, they do not form a depot and instead are rapidly absorbed into the circulation. However, they are only slowly cleaved into monomers, and as a result, have a very long duration in the body even outlasting that of many longer-chain fatty-acid estrogen esters.

Structural properties of selected estradiol esters
EstrogenStructureEster(s)Relative
mol. weight
Relative
E2 contentb
log Pc
Position(s)Moiet(ies)TypeLengtha
Estradiol
1.001.004.0
Estradiol acetate
C3Ethanoic acidStraight-chain fatty acid21.150.874.2
Estradiol benzoate
C3Benzoic acidAromatic fatty acid– (~4–5)1.380.724.7
Estradiol dipropionate
C3, C17βPropanoic acid (×2)Straight-chain fatty acid3 (×2)1.410.714.9
Estradiol valerate
C17βPentanoic acidStraight-chain fatty acid51.310.765.6–6.3
Estradiol benzoate butyrate
C3, C17βBenzoic acid, butyric acidMixed fatty acid– (~6, 2)1.640.616.3
Estradiol cypionate
C17βCyclopentylpropanoic acidCyclic fatty acid– (~6)1.460.696.9
Estradiol enanthate
C17βHeptanoic acidStraight-chain fatty acid71.410.716.7–7.3
Estradiol dienanthate
C3, C17βHeptanoic acid (×2)Straight-chain fatty acid7 (×2)1.820.558.1–10.4
Estradiol undecylate
C17βUndecanoic acidStraight-chain fatty acid111.620.629.2–9.8
Estradiol stearate
C17βOctadecanoic acidStraight-chain fatty acid181.980.5112.2–12.4
Estradiol distearate
C3, C17βOctadecanoic acid (×2)Straight-chain fatty acid18 (×2)2.960.3420.2
Estradiol sulfate
C3Sulfuric acidWater-soluble conjugate1.290.770.3–3.8
Estradiol glucuronide
C17βGlucuronic acidWater-soluble conjugate1.650.612.1–2.7
Estramustine phosphated
C3, C17βNormustine, phosphoric acidWater-soluble conjugate1.910.522.9–5.0
Polyestradiol phosphatee
C3–C17βPhosphoric acidWater-soluble conjugate1.23f0.81f2.9g
Footnotes: a = Length of ester in carbon atoms for straight-chain fatty acids or approximate length of ester in carbon atoms for aromatic or cyclic fatty acids. b = Relative estradiol content by weight (i.e., relative estrogenic exposure). c = Experimental or predicted octanol/water partition coefficient (i.e., lipophilicity/hydrophobicity). Retrieved from PubChem, ChemSpider, and DrugBank. d = Also known as estradiol normustine phosphate. e = Polymer of estradiol phosphate (~13 repeat units). f = Relative molecular weight or estradiol content per repeat unit. g = log P of repeat unit (i.e., estradiol phosphate). Sources: See individual articles.

See also

References

  1. 1 2 3 4 5 6 7 8 9 10 Kuhl H (2005). "Pharmacology of estrogens and progestogens: influence of different routes of administration" (PDF). Climacteric. 8 (Suppl 1): 3–63. doi:10.1080/13697130500148875. PMID 16112947. S2CID 24616324.
  2. 1 2 3 4 5 6 7 8 9 Michael Oettel; Ekkehard Schillinger (6 December 2012). Estrogens and Antiestrogens II: Pharmacology and Clinical Application of Estrogens and Antiestrogen. Springer Science & Business Media. pp. 235–237, 261, 271. ISBN 978-3-642-60107-1. Natural estrogens considered here include: [...] Esters of 17β-estradiol, such as estradiol valerate, estradiol benzoate and estradiol cypionate. Esterification aims at either better absorption after oral administration or a sustained release from the depot after intramuscular administration. During absorption, the esters are cleaved by endogenous esterases and the pharmacologically active 17β-estradiol is released; therefore, the esters are considered as natural estrogens.
  3. 1 2 R. S. Satoskar; S. D. Bhandarkar &nirmala N. Rege (1969). Pharmacology And Pharmacotherapeutics (New Revised 21 St Ed.). Popular Prakashan. p. 24. ISBN 978-81-7991-527-1. Retrieved 29 May 2012.
  4. Gordon L. Amidon; Ping I. Lee; Elizabeth M. Topp (2000). Transport Processes in Pharmaceutical Systems. CRC Press. pp. 188–189. ISBN 978-0-8247-6610-8. Retrieved 29 May 2012.
  5. Parkes AS (February 1938). "Effective Absorption of Hormones". Br Med J. 1 (4024): 371–3. doi:10.1136/bmj.1.4024.371. PMC 2085798. PMID 20781252.
  6. Düsterberg B, Nishino Y (December 1982). "Pharmacokinetic and pharmacological features of oestradiol valerate". Maturitas. 4 (4): 315–24. doi:10.1016/0378-5122(82)90064-0. PMID 7169965.
  7. J. Elks (14 November 2014). The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and Bibliographies. Springer. pp. 897–. ISBN 978-1-4757-2085-3.
  8. Index Nominum 2000: International Drug Directory. Taylor & Francis US. 2000. pp. 404–406. ISBN 978-3-88763-075-1. Retrieved 13 September 2012.
  9. William Andrew Publishing (22 October 2013). Pharmaceutical Manufacturing Encyclopedia, 3rd Edition. Elsevier. pp. 1477–. ISBN 978-0-8155-1856-3.
  10. 1 2 3 Oriowo MA, Landgren BM, Stenström B, Diczfalusy E (April 1980). "A comparison of the pharmacokinetic properties of three estradiol esters". Contraception. 21 (4): 415–24. doi:10.1016/s0010-7824(80)80018-7. PMID 7389356.
  11. 1 2 C. W. Emmens (22 October 2013). Hormone Assay. Elsevier Science. pp. 394–395. ISBN 978-1-4832-7286-3.
  12. 1 2 Gudermann, T. (2005). "Endokrinpharmakologie". Klinische Endokrinologie für Frauenärzte. pp. 187–220. doi:10.1007/3-540-26406-X_10. ISBN 3-540-44162-X.
  13. Kuiper GG, Carlsson B, Grandien K, Enmark E, Häggblad J, Nilsson S, Gustafsson JA (March 1997). "Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta". Endocrinology. 138 (3): 863–70. doi:10.1210/endo.138.3.4979. PMID 9048584.
  14. Hochberg RB (June 1998). "Biological esterification of steroids". Endocr. Rev. 19 (3): 331–48. doi:10.1210/edrv.19.3.0330. PMID 9626557.
  15. Janocko L, Larner JM, Hochberg RB (April 1984). "The interaction of C-17 esters of estradiol with the estrogen receptor". Endocrinology. 114 (4): 1180–6. doi:10.1210/endo-114-4-1180. PMID 6705734.
  16. Bjerregaard-Olesen C, Ghisari M, Kjeldsen LS, Wielsøe M, Bonefeld-Jørgensen EC (January 2016). "Estrone sulfate and dehydroepiandrosterone sulfate: Transactivation of the estrogen and androgen receptor". Steroids. 105: 50–8. doi:10.1016/j.steroids.2015.11.009. PMID 26666359. S2CID 46663814.
  17. Clark, Barbara J.; Prough, Russell A.; Klinge, Carolyn M. (2018). "Mechanisms of Action of Dehydroepiandrosterone". Dehydroepiandrosterone. Vitamins and Hormones. Vol. 108. pp. 29–73. doi:10.1016/bs.vh.2018.02.003. ISBN 9780128143612. ISSN 0083-6729. PMID 30029731.
  18. H.J. Buchsbaum (6 December 2012). The Menopause. Springer Science & Business Media. pp. 62–. ISBN 978-1-4612-5525-3.
  19. Recio R, Garza-Flores J, Schiavon R, Reyes A, Diaz-Sanchez V, Valles V, Luz de la Cruz D, Oropeza G, Perez-Palacios G (June 1986). "Pharmacodynamic assessment of dihydroxyprogesterone acetophenide plus estradiol enanthate as a monthly injectable contraceptive". Contraception. 33 (6): 579–89. doi:10.1016/0010-7824(86)90046-6. PMID 3769482.
  20. Wiemeyer JC, Fernandez M, Moguilevsky JA, Sagasta CL (1986). "Pharmacokinetic studies of estradiol enantate in menopausic women". Arzneimittelforschung. 36 (11): 1674–7. PMID 3814225.
  21. Vermeulen A (1975). "Longacting steroid preparations". Acta Clin Belg. 30 (1): 48–55. doi:10.1080/17843286.1975.11716973. PMID 1231448.
  22. R. S. Satoskar; S. D. Bhandarkar &nirmala N. Rege (1973). Pharmacology and Pharmacotherapeutics. Popular Prakashan. pp. 934–. ISBN 978-81-7991-527-1.
  23. 1 2 3 4 5 6 Gunnarsson PO, Norlén BJ (1988). "Clinical pharmacology of polyestradiol phosphate". Prostate. 13 (4): 299–304. doi:10.1002/pros.2990130405. PMID 3217277. S2CID 33063805.
  24. 1 2 Stege R, Gunnarsson PO, Johansson CJ, Olsson P, Pousette A, Carlström K (1996). "Pharmacokinetics and testosterone suppression of a single dose of polyestradiol phosphate (Estradurin) in prostatic cancer patients". Prostate. 28 (5): 307–10. doi:10.1002/(SICI)1097-0045(199605)28:5<307::AID-PROS6>3.0.CO;2-8. PMID 8610057. S2CID 33548251.
  25. 1 2 Dinnendahl, V; Fricke, U, eds. (2010). Arzneistoff-Profile (in German). Vol. 4 (23 ed.). Eschborn, Germany: Govi Pharmazeutischer Verlag. ISBN 978-3-7741-98-46-3.
  26. Hochberg RB, Pahuja SL, Larner JM, Zielinski JE (1990). "Estradiol-fatty acid esters. Endogenous long-lived estrogens". Ann. N. Y. Acad. Sci. 595 (1): 74–92. Bibcode:1990NYASA.595...74H. doi:10.1111/j.1749-6632.1990.tb34284.x. PMID 2197972. S2CID 19866729.
  27. Shellenberger, T. E. (1986). "Pharmacology of estrogens". The Climacteric in Perspective. pp. 393–410. doi:10.1007/978-94-009-4145-8_36. ISBN 978-94-010-8339-3.

Further reading


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.