环同态
在环论或抽象代数中,环同态是指两个环R與S之间的映射f保持两个环的加法与乘法运算。
环论 |
---|
更加精确地,如果R和S是环,则环同态是一个函数f : R → S,使得:
- f(a + b) = f(a) + f(b),对于R内的所有a和b;
- f(ab) = f(a) f(b),对于R内的所有a和b;
- f(1) = 1。
如果我们不要求环具有乘法单位元,则最后一个条件不需要。
性质
直接从这些定义,我们可以推出:
- f(0) = 0
- f(−a) = −f(a)
- 如果a在R内具有乘法逆元,则f(a)在S内具有乘法逆元,且有f(a−1) = (f(a))−1。
- f的核,定义为ker(f) = {a in R : f(a) = 0},是R内的一个理想。每一个交换环R内的理想都可以从某个环同态用这种方法得出。对于具有单位元的环,环同态的核是一个没有单位元的子环。
- 环同态f是单射,当且仅当ker(f) = {0}。
- f的像,im(f),是S的一个子环。
- 如果f是双射,那么它的逆映射f−1也是环同态。在这种情况下,f称为同构。在环论的立场下,同构的环不能被区分。
- 如果存在一个环同态f : R → S,那么S的特征整除R的特征。这有时候可以用来证明在一定的环R和S之间,不存在环同态R → S。
- 如果R是一个域,则f要么是单射,要么是零函数。(但是,如果f保持乘法单位元,则它不能是零函数)。
- 如果R和S都是域,则im(f)是S的一个子域(如果f不是零函数)。
- 如果R和S是交换环,S没有零因子,则ker(f)是R的一个素理想。
- 如果R和S是交换环,S是一个域,且f是满射,则ker(f)是R的一个最大理想。
- 对于每一个环R,都存在一个唯一的环同态Z → R。这就是说,整数环是环范畴中的始对象。
例子
环同态的种类
- 双射的环同态称为环同构。
- 定义域与值域相同的环同态称为环自同态。
在环范畴中,单射的环同态与单同态是相等的:如果f:R→S是单同态而不是单射,则它把某个r1和r2映射到S的同一个元素。考虑从Z[x]到R的两个映射g1和g2,分别把x映射到r1和r2;f o g1和f o g2是相等的,但由于f是单同态,这是不可能的。
然而,在环范畴中,满射的环同态与满同态是非常不同的。例如,Z ⊆ Q是满同态,但不是满射。
参见
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.